Biologic ACL Repair Augmentation State-of-the-Art

Main Article Content

Tiago Lazzaretti Fernandes https://orcid.org/0000-0002-6665-3608
Joao Vitor de Castro Fernandes https://orcid.org/0000-0001-8759-1699
Sergio Ferreira Barbosa Junior https://orcid.org/0009-0005-5161-6387
Teófilo Josué Alecrim da Costa Vieira https://orcid.org/0000-0001-8045-291X
Arnaldo José Hernandez https://orcid.org/0000-0001-8645-3956

Keywords

Biological ACL, Biologic Augmentation, Platelet Rich Plasma, stem cell therapy

Abstract

The incidence of anterior cruciate ligament (ACL) injuries is on the rise due to increased physical and sports activities. Thus, ACL reconstruction is a common surgical procedure to treat ACL ruptures, however, it has a failure rate of 0.7–21% and only 63% of the patients are able to recover to their pre-injury sport level. Orthobiologics, including platelet-rich plasma (PRP), growth factors, and stem cells, are being explored as alternative treatment methods to maximize the results and reduce surgical morbidity and healing time. PRP is derived from a blood sample with high platelet concentration and containing growth factors and interleukins. Studies have shown that PRP can improve the maturation of ACL reconstruction but more research is required to support its use in ACL surgery. On one hand, growth factors play a crucial role in ligament healing and PRP, which contains high levels of growth factors, has been shown to stimulate angiogenesis and encourage cell proliferation. On the other hand, stem cells have the ability to differentiate into other cell types and limit the inflammatory microenvironment during acute ligament injury. Ligament-derived stem cells show better potential for lineage-specific tendon/ligament differentiation when used with differentiation inducers. The use of stem cells in ACL reconstruction is still in the early stages of investigation. Therefore, cell therapy agents have shown promising results in preclinical models, but more research is required to determine the most effective biological agents for treatment.

Abstract 251 | PDF Downloads 183

References

1. Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med. 2008 Nov 13;359(20):2135–42. http://dx.doi.org/10.1056/NEJMcp1805931
2. Wang L, Lin L, Feng Y, Fernandes TL, Asnis P, Hosseini A, et al. Anterior cruciate ligament reconstruction and cartilage contact forces--A 3D computational simulation. Clin Biomech (Bristol, Avon). 2015 Dec;30(10):1175–80. http://dx.doi.org/1016/j.clinbiomech.2015.08.007
3. Sonnery-Cottet B, Colombet P. Partial tears of the anterior cruciate ligament. Orthop Traumatol Surg Res. 2016 Feb;102(1 Suppl):S59–67. http://dx.doi.org/10.1016/j.otsr.2015.06.032
4. Bollen S. Epidemiology of knee injuries: diagnosis and triage. Br J Sports Med 2000; 34: 227–228. http://dx.doi.org/10.1136/bjsm.34.3.227-a
5. Fernandes TL, Moreira HH, Andrade R, Sasaki SU, Bernardo WM, Pedrinelli A, Espregueira-Mendes J, Hernandez AJ. Clinical outcome evaluation of anatomic anterior cruciate ligament reconstruction with tunnel positioning using gold standard techniques: a systematic review and meta-analysis. Orthop J Sports Med. 2021 Jun 28;9(6):23259671211013327. http://dx.doi.org/10.1177/23259671211013327
6. Järvelä T. Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomized clinical study. Knee Surg Sports Traumatol Arthrosc 2007; 15: 500–507. http://dx.doi.org/10.1007/s00167-006-0254-z
7. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to sport following anterior cruciate ligament recon- struction surgery: a systematic review and meta- analysis of the state of play. Br J Sports Med. 2011;45:596–606. http://dx.doi.org/10.1136/bjsm.2010.076364
8. Webster KE, Feller JA. Return to level I sports after anterior cruciate ligament reconstruction: evaluation of age, sex, and readiness to return criteria. Orthop J Sports Med. 2018;6:1–6. http://dx.doi.org/10.1177/2325967118788045
9. Chahla J, Cinque ME, Mandelbaum BR. Biologically augmented quadriceps tendon autograft with platelet-rich plasma for anterior cruciate ligament reconstruction. Arthrosc Tech. 2018 Oct 1;7(11):e1063-e1069. http://dx.doi.org/10.1016/j.eats.2018.06.011
10. Chahla J, Kennedy MI, Aman ZS, RF LP. Ortho- biologics for ligament repair and reconstruction. Clin Sports Med. 2019:97–107. http://dx.doi.org/10.1016/j.csm.2018.08.003
11. Di Matteo B, Filardo G, Kon E, Marcacci M. Platelet-rich plasma: evidence for the treatment of patellar and Achilles tendinopathy- -a systematic review. Musculoskelet Surg 2015; 99: 1–9. http://dx.doi.org/10.1055/s-0041-1735475
12. Hall MP, Band PA, Meislin RT, Jazrawi LM, Cardone DA. Platelet-rich plasma: current concepts and appli- cation in sports medicine. J Am Acad Orthop Surg. 2009;17:602–8. http://dx.doi.org/10.5435/00124635-200910000-00002
13. Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. 2014. http://dx.doi.org/1002/14651858.CD010071.pub2
14. Zhang JY, Fabricant PD, Ishmael CR, Wang JC, Petrigliano FA, Jones KJ. Utilization of platelet-rich plasma for musculoskeletal injuries: an analysis of current treatment trends in the United States. Orthop J Sports Med. 2016;4:24–6. http://dx.doi.org/10.1177/2325967116676241
15. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to sport following anterior cruciate ligament recon- struction surgery: a systematic review and meta- analysis of the state of play. Br J Sports Med. 2011;45:596–606. http://dx.doi.org/10.1136/bjsm.2010.076364
16. Andriolo L, Di Matteo B, Kon E, Filardo G, Venieri G, Marcacci M. PRP augmentation for ACL recon- struction. Biomed Res Int. 2015. http://dx.doi.org/10.1155/2015/371746
17. Riediger MD, Stride D, Coke SE, Kurz AZ, Duong A, Ayeni OR. ACL reconstruction with augmenta- tion: a scoping review. Curr Rev Musculoskelet Med. 2019;12:166–72. http://dx.doi.org/10.1007/s12178-019-09548-4
18. Ventura A, Terzaghi C, Borgo E, Verdoia C, Gallazzi M, Failoni S. Use of growth factors in ACL surgery: preliminary study. J Orthop Traumatol. 2005;6:76–9. http://dx.doi.org/10.1007/s10195-005-0085-6
19. Orrego M, Larrain C, Rosales J, Valenzuela L, Matas J, Durruty J, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy. 2008;24:1373–80 http://dx.doi.org/10.1016/j.arthro.2008.07.016
20. Van Dyck P, Zazulia K, Smekens C, Heusdens CHW, Janssens T, Sijbers J. Assessment of anterior cruciate ligament graft maturity with conventional magnetic resonance imaging: a systematic literature review. Orthop J Sports Med. 2019;7:1–9. http://dx.doi.org/10.1177/232596711984901
21. Davey MS, Hurley ET, Withers D, Moran R, Moran CJ. Anterior cruciate ligament reconstruction with platelet-rich plasma: a systematic review of random- ized control trials. Art Ther. 2020:1–7. http://dx.doi.org/10.1016/j.arthro.2019.11.004
22. Seijas R, Cuscó X, Sallent A, Serra I, Ares O, Cugat R. Pain in donor site after BTB-ACL reconstruction with PRGF: a randomized trial. Arch Orthop Trauma Surg. 2016;136:829–35. http://dx.doi.org/10.1007/s00402-016-2458-0
23. De Almeida AM, Demange MK, Sobrado MF, Rodrigues MB, Pedrinelli A, Hernandez AJ. Patellar tendon healing with platelet-rich plasma: a prospective randomized controlled trial. Am J Sports Med. 2012;40:1282–8. http://dx.doi.org/10.1177/0363546512441344
24. Cervellin M, de Girolamo L, Bait C, Denti M, Volpi P. Autologous platelet-rich plasma gel to reduce donor-site morbidity after patellar tendon graft har- vesting for anterior cruciate ligament reconstruction: a randomized, controlled clinical study. Knee Surg Sport Traumatol Arthrosc. 2012;20:114–20. http://dx.doi.org/10.1007/s00167-011-1570-5
25. Walters BL, Porter DA, Hobart SJ, Bedford BB, Hogan DE, McHugh MM, et al. Effect of intraopera- tive platelet-rich plasma treatment on post-operative donor site knee pain in patellar tendon autograft anterior cruciate ligament reconstruction: a double- blind randomized controlled trial. Am J Sports Med. 2018;46:1827–35. http://dx.doi.org/10.1177/0363546518769295. Epub 2018 May 9
26. Dallo I, Chahla J, Mitchell JJ, Pascual-Garrido C, Feagin JA, LaPrade RF. Biologic approaches for the treatment of partial tears of the anterior cruciate ligament: a current concepts review. Orthop J Sports Med. 2017;5:1–9. http://dx.doi.org/10.1177/2325967116681724
27. Seijas R, Ares O, Cuscó X, Álvarez P, Steinbacher G, Cugat R. Partial anterior cruciate ligament tears treated with intraligamentary plasma rich in growth factors. World J Orthop. 2014;5:373–8. http://dx.doi.org/10.5312/wjo.v5.i3.373
28.Koch M, Mayr F, Achenbach L, Krutsch W, Lang S, Hilber F, Weber J, Pfeifer CG, Woehl R, Eichhorn J, Zellner J, Nerlich M, Angele P. Partial Anterior Cruciate Ligament Ruptures: Advantages by Intraligament Autologous Conditioned Plasma Injection and Healing Response Technique-Midterm Outcome Evaluation. Biomed Res Int. 2018 Jul 25;2018:3204869. http://dx.doi.org/10.1155/2018/3204869
29. Kon E, Di Matteo B, Altomare D, Iacono F, Kurpyakov A, Lychagin A, et al. Biologic agents to optimize outcomes following ACL repair and reconstruction: A systematic review of clinical evidence. J Orthop Res. 2022 Jan;40(1):10-28. http://dx.doi.org/10.1002/jor.25011
30. Sánchez M, Anitua E, Azofra J, Prado R, Muruzabal F, Andia I. Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy. 2010 Apr;26(4):470–80. http://dx.doi.org/10.1016/j.arthro.2009.08.019
31. Deie M, Marui T, Allen CR, Hildebrand KA, Georgescu HI, Niyibizi C, et al. The effects of age on rabbit MCL fibroblast matrix synthesis in response to TGF-beta 1 or EGF. Mech Ageing Dev. 1997;97(2):121–30. http://dx.doi.org/10.1016/s0047-6374(97)00049-3
32. DesRosiers EA, Yahia L, Rivard CH. Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J Orthop Res. 1996;14(2):200–8. http://dx.doi.org/10.1002/jor.1100140206
33. Schmidt CC, Georgescu HI, Kwoh CK, Blomstrom GL, Engle CP, Larkin LA, et al. Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J Orthop Res. 1995; 13(2):184–90. http://dx.doi.org/10.1002/jor.1100130206
34. Tsubone, T, Moran SL, Amadio, PC, Zhao C, An KN. Expression of growth factors in canine flexor tendon after laceration in vivo. Ann Plastic Surg. 2004;53(4):393–7. http://dx.doi.org/10.1097/01.sap.0000125501.72773.01
35. Murray MM, Spector M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001;22(17):2393–402. http://dx.doi.org/10.1016/s0142-9612(00)00426-9
36. Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1997;5(3):189–94. http://dx.doi.org/10.1007/s001670050049
37. Murray, M., Vavken, P. and Fleming, B., 2013. The ACL Handbook. New York, NY: Springer, pp.203–224.
38. Murray MM, Martin SD, Spector M. Migration of cells from human anterior cruciate ligament explants into collagen-glycosaminoglycan scaffolds. J Orthop Res. 2000;18(4):557–64. http://dx.doi.org/10.1002/jor.1100180407
39. Murray MM, Forsythe B, Chen F, Lee SJ, Yoo JJ, Atala A, et al. The effect of thrombin on ACL fibroblast interactions with collagen hydrogels. J Orthop Res. 2006;24(3):508–15. http://dx.doi.org/10.1002/jor.20054
40. Uchida R, Jacob G, Shimomura K, Horibe S, Nakamura N. Biological Augmentation of ACL Repair and Reconstruction: Current Status and Future Perspective. Sports Med Arthrosc Rev. 2020 Jun;28(2):49–55. http://dx.doi.org/10.1097/JSA.0000000000000266
41. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. http://dx.doi.org/10.1080/14653240600855905
42. Riekstina U, Muceniece R, Cakstina I, Muiznieks I, Ancans J. Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions. Cytotechnology. 2008;58:153–62. http://dx.doi.org/10.1007/s10616-009-9183-2
43. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33:1402–16. http://dx.doi.org/10.1016/j.exphem.2005.07.003
44. Zhang X, Yang M, Lin L, Chen P, Ma KT, Zhou CY, et al. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose - Derived stem cells in vitro and in vivo. Calcif Tissue Int. 2006;79:169–78. http://dx.doi.org/10.1007/s00223-006-0083-6
45. Saether EE, Chamberlain CS, Aktas E, Leiferman EM, Brickson SL, Vanderby R. Primed mesenchymal stem cells alter and improve rat medial collateral ligament healing. Stem Cell Rev Reports. 2016;12:42–53. http://dx.doi.org/10.1007/s12015-015-9633-5
46. Narbona-Carceles J, Vaquero J, Su.rez-Sancho SBS, Forriol F, Fern.ndez-Santos ME. Bone marrow mesenchymal stem cell aspirates from alternative sources: is the knee as good as the iliac crest? Injury. 2014;45:S42–7. http://dx.doi.org/10.1016/S0020-1383(14)70009-9
47. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68. http://dx.doi.org/10.1186/s13287-019-1165-5
48. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods. 2009;15(3):431–5. http://dx.doi.org/10.1089/ten.tec.2008.0534
49. Baird JPE, Anz A, Andrews J, Plummer HA, McGowan B, Gonzalez M, et al. Cellular Augmentation of Anterior Cruciate Ligament Surgery Is Not Currently Evidence Based: A Systematic Review of Clinical Studies. Arthroscopy. 2021 Dec 15:S0749-8063(21)01102-6. http://dx.doi.org/10.1016/j.arthro.2021.11.056
50. Alentorn-Geli E, Seijas R, Martínez-De la Torre A, Cuscó X, Steinbacher G, Álvarez-Díaz P, et al. Effects of autologous adipose-derived regenerative stem cells administered at the time of anterior cruciate ligament reconstruction on knee function and graft healing. J Orthop Surg (Hong Kong). 2019 Sep-Dec;27(3):2309499019867580. http://dx.doi.org/10.1177/2309499019867580
51. Gobbi A, Karnatzikos G, Sankineani SR, Petrera M. Biological augmentation of ACL refixation in partial lesions in a group of athletes: results at the 5-year follow-up. Tech Orthop. 2013;28:180–184. http://dx.doi.org/10.1097/BTO.0b013e318294ce44
52. Silva A, Sampaio R, Fernandes R, Pinto E. Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc. 2014 Jan;22(1):66-71. http://dx.doi.org/10.1007/s00167-012-2279-9
53. Wang Y, Shimmin A, Ghosh P, Marks P, Linklater J, Connell D, et al. Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomized trial. Arthritis Res Ther. 2017 Aug 2;19(1):180. http://dx.doi.org/10.1186/s13075-017-1391-0
54. Wang C, Hu Y, Zhang S, Ruan D, Huang Z, He P, Cai H, Heng BC, Chen X, Shen W. Application of Stem Cell Therapy for ACL Graft Regeneration. Stem Cells Int. 2021 Aug 2;2021:6641818. http://dx.doi.org/10.1155/2021/6641818
55. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine. 2007;13(10):1219–1227. http://dx.doi.org/10.1038/nm1630
56. Shen H., Yoneda S., Abu‐Amer Y., Guilak F., Gelberman R. H. Stem cell-derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. Journal of Orthopedic Res. 2019;38:117–127. http://dx.doi.org/10.1002/jor.24406
57. Wang YJ, He G, Guo Y, Tang H, Shi Y, Bian X, et al. Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. J Cell Mol Med. 2019;23(8):5475–5485. http://dx.doi.org/10.1111/jcmm.14430
58. Chamberlain CS, Clements AEB, Kink JA, Choi U, Baer GS, Halanski MA, et al. Extracellular vesicle-educated macrophages promote early Achilles tendon healing. Stem Cells. 2019;37(5):652–662. http://dx.doi.org/10.1002/stem.2988
59. Centeno C, Lucas M, Stemper I, Dodson E. Image Guided Injection of Anterior Cruciate Ligament Tears with Autologous Bone Marrow Concentrate and Platelets: Midterm Analysis from A Randomized Controlled Trial. Bio Orthop J [Internet]. 2022 Jan. 2 [cited 2023 Jan. 28];3(SP2):e7-e20. Available from: https://www.biologicortho.com/index.php/BiologicOrtho/article/view/24
60. Murrell WD, Anz AW, Badsha H, Bennett WF, Boykin RE, Caplan AI. Regenerative treatments to enhance orthopedic surgical outcome. PM R. 2015 Apr;7(4 Suppl):S41-S52. http://dx.doi.org/10.1016/j.pmrj.2015.01.015