The Effects of Platelet-Rich Plasma in Conjunction with Rehabilitation for Lower Extremity Musculoskeletal Pathologies A Systematic Review with Meta-Analysis

Main Article Content

Michael Masaracchio https://orcid.org/0000-0001-6851-2713
Kaitlin Kirker

Keywords

Exercise, Platelet-rich plasma, Rehabilitation

Abstract

Background: Platelet-rich plasma (PRP) has been considered for its role in facilitating the body’s own healing processes, with the potential to complement rehabilitation in the management of lower extremity
musculoskeletal pathologies.
Methods: Eligible studies were randomized clinical trials and quasi-experimental trials with completed data analysis; published in English; recruited participants aged >18 years; had at least two groups, with one intervention group receiving PRP injection alone or PRP injection and rehabilitation, and the comparison group receiving either rehabilitation alone or a control group receiving saline and rehabilitation; included at least one outcome measure of pain, disability, quality of life, or return to play. An electronic search was conducted using PubMed, Embase, Cochrane, Pedro, and clinicaltrials.gov. Methodological quality was assessed using the Cochrane Collaboration Risk of Bias (RoB) tool. The Grading of Recommendations Assessment, Development, and Evaluation approach was used to assess the quality of evidence. Meta-analyses were conducted across outcomes in each pathology when possible.
Results: Twenty-one studies assessed Achilles rupture, Achilles tendinopathy, lateral ankle sprain, high ankle sprain, hamstring injury, knee osteoarthritis, acute muscle injury, patellar tendinopathy, and plantar fasciitis, with an average RoB score of 9.9 out of 12. Meta-analyses for Achilles rupture (n = 270) revealed a nonsignificant effect on disability in the short and long term (high level of evidence) when comparing PRP, immobilization, and exercise/physical therapy to placebo, immobilization, and exercise/physical therapy. Meta-analyses for Achilles tendinopathy revealed a nonsignificant effect on pain (n = 64) in the short term, and disability in the short (n = 138) as well as long term (n = 192) (very low to low level of evidence) when comparing PRP and exercise to placebo and exercise.
Conclusions: While individual studies demonstrated significant findings across outcomes, the non-significant pooled results and inability to perform further meta-analyses made it difficult to provide definitive recommendations for the addition of PRP to exercise for lower extremity musculoskeletal pathologies. Future studies should standardized PRP exercise rehabilitation protocols with better dosage parameters, consider larger sample sizes, and have short and long term follow-up periods consistent with the Cochrane Collaboration.

Abstract 125 | PDF Downloads 51

References

1. Dieleman JL, Baral R, Birger M, Bui AL, Bulchis A, Chapin A, et al. US Spending on Personal Health Care and Public Health, 1996-2013. JAMA. 2016;316(24):2627-46. https://www.ncbi.nlm.nih.gov/pubmed/28027366
2. Dieleman JL, Templin T, Sadat N, Reidy P, Chapin A, Foreman K, et al. National spending on health by source for 184 countries between 2013 and 2040. Lancet. 2016;387(10037):2521-35. https://www.ncbi.nlm.nih.gov/pubmed/27086174
3. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81(9):646-56. https://www.ncbi.nlm.nih.gov/pubmed/14710506
4. Bachynsky N. Implications for policy: The Triple Aim, Quadruple Aim, and interprofessional collaboration. Nurs Forum. 2020;55(1):54-64. https://www.ncbi.nlm.nih.gov/pubmed/31432533
5. Transparency market research, platelet rich plasma (PRP) market (type—Pureplatelet rich plasma (P-PRP), leukocyteplatelet rich plasma (L-PRP), and pure-platelet-rich fibrin (P-PRF); origin— Autologous, homologous, and allogeneic; application—Orthopedic surgery, neurosurgery, cosmetic surgery, general surgery, urological surgery, cardiothoracic surgery, and periodontal surgery)—Global industry analysis, size, share, growth, trends and forecast 2016–2024. Albany, NY. 2016 [Available from: https://wwwtransparencymarketresearch.com/platelet-rich-plasma-market.html.
6. Kolber MJ, Purita J, Paulus C, Carreno JA, Hanney WJ. Platelet rich plasma: postprocedural considerations for the sports medicine professional. Strength Cond J. 2018;40:95-107.
7. Kolber MJ, Purita J, Paulus C, Carreno JA, Hanney WJ. Platelet-rich plasma: basic science and biological effects. Strength Cond J. 2018;40:77-94.
8. Kolber MJ, Salamh PA. Platelet-rich plasma: have we reached a consensus or understanding? Strength Cond J. 2019;41:81-6.
9. Dallari D, Tschon M, Sabbioni G, Giavaresi G. PRP and HA for Hip Osteoarthritis: Response. Am J Sports Med. 2016;44(9):NP44-6. https://www.ncbi.nlm.nih.gov/pubmed/27587846
10. Kothari SY, Srikumar V, Singh N. Comparative Efficacy of Platelet Rich Plasma Injection, Corticosteroid Injection and Ultrasonic Therapy in the Treatment of Periarthritis Shoulder. J Clin Diagn Res. 2017;11(5):RC15-RC8. https://www.ncbi.nlm.nih.gov/pubmed/28658861
11. Shen L, Yuan T, Chen S, Xie X, Zhang C. The temporal effect of platelet-rich plasma on pain and physical function in the treatment of knee osteoarthritis: systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res. 2017;12(1):16. https://www.ncbi.nlm.nih.gov/pubmed/28115016
12. Robins R. Platelet rich plasma: Current indications and use in orthopaedic care. Med Res Arch. 2017;5(6):1-17.
13. Navani A, Li G, Chrystal J. Platelet Rich Plasma in Musculoskeletal Pathology: A Necessary Rescue or a Lost Cause? Pain Physician. 2017;20(3):E345-E56. https://www.ncbi.nlm.nih.gov/pubmed/28339434
14. Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. 2014(4):CD010071. https://www.ncbi.nlm.nih.gov/pubmed/24782334
15. Bureau of Labor Statistics, U.S. Department of Labor, The Economics Daily, Sports and exercise among Americans. 2016 [Available from: https://www.bls.gov/opub/ted/2016/sports-and-exercise-among-americans.htm.
16. Sheu Y, Chen LH, Hedegaard H. Sports- and Recreation-related Injury Episodes in the United States, 2011-2014. Natl Health Stat Report. 2016(99):1-12. https://www.ncbi.nlm.nih.gov/pubmed/27906643
17. Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):1543-52. https://www.ncbi.nlm.nih.gov/pubmed/25157180
18. Clanton TO, Matheny LM, Jarvis HC, Jeronimus AB. Return to play in athletes following ankle injuries. Sports Health. 2012;4(6):471-4. https://www.ncbi.nlm.nih.gov/pubmed/24179584
19. Angoorani H, Mazaherinezhad A, Marjomaki O, Younespour S. Treatment of knee osteoarthritis with platelet-rich plasma in comparison with transcutaneous electrical nerve stimulation plus exercise: a randomized clinical trial. Med J Islam Repub Iran. 2015;29:223. https://www.ncbi.nlm.nih.gov/pubmed/26478881
20. Blanco-Rivera J, Elizondo-Rodriguez J, Simental-Mendia M, Vilchez-Cavazos F, Pena-Martinez VM, Acosta-Olivo C. Treatment of lateral ankle sprain with platelet-rich plasma: A randomized clinical study. Foot Ankle Surg. 2020;26(7):750-4. https://www.ncbi.nlm.nih.gov/pubmed/31640921
21. Boesen AP, Boesen MI, Hansen R, Barfod KW, Lenskjold A, Malliaras P, et al. Effect of Platelet-Rich Plasma on Nonsurgically Treated Acute Achilles Tendon Ruptures: A Randomized, Double-Blinded Prospective Study. Am J Sports Med. 2020;48(9):2268-76. https://www.ncbi.nlm.nih.gov/pubmed/32485112
22. Boesen AP, Hansen R, Boesen MI, Malliaras P, Langberg H. Effect of High-Volume Injection, Platelet-Rich Plasma, and Sham Treatment in Chronic Midportion Achilles Tendinopathy: A Randomized Double-Blinded Prospective Study. Am J Sports Med. 2017;45(9):2034-43. https://www.ncbi.nlm.nih.gov/pubmed/28530451
23. Bubnov R, Yevseenko V, Semeniv I. Ultrasound guided injections of platelets rich plasma for muscle injury in professional athletes. Comparative study. Med Ultrason. 2013;15(2):101-5. https://www.ncbi.nlm.nih.gov/pubmed/23702498
24. Chew KT, Leong D, Lin CY, Lim KK, Tan B. Comparison of autologous conditioned plasma injection, extracorporeal shockwave therapy, and conventional treatment for plantar fasciitis: a randomized trial. PM R. 2013;5(12):1035-43. https://www.ncbi.nlm.nih.gov/pubmed/23973504
25. de Jonge S, de Vos RJ, Weir A, van Schie HT, Bierma-Zeinstra SM, Verhaar JA, et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med. 2011;39(8):1623-9. https://www.ncbi.nlm.nih.gov/pubmed/21602565
26. de Vos RJ, Weir A, van Schie HT, Bierma-Zeinstra SM, Verhaar JA, Weinans H, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303(2):144-9. https://www.ncbi.nlm.nih.gov/pubmed/20068208
27. Elik H, Dogu B, Yilmaz F, Begoglu FA, Kuran B. The efficiency of platelet-rich plasma treatment in patients with knee osteoarthritis. J Back Musculoskelet Rehabil. 2020;33(1):127-38. https://www.ncbi.nlm.nih.gov/pubmed/31127755
28. Hamid MS, Ali MR, Yusof A, Lee LP. Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am J Sports Med. 2014;42(2410-2418).
29. Hamilton B, Tol JL, Almusa E, Boukarroum S, Eirale C, Farooq A, et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med. 2015;49(14):943-50. https://www.ncbi.nlm.nih.gov/pubmed/26136179
30. Johnson-Lynn S, Cooney A, Ferguson D, Bunn D, Gray W, Coorsh J, et al. A Feasibility Study Comparing Platelet-Rich Plasma Injection With Saline for the Treatment of Plantar Fasciitis Using a Prospective, Randomized Trial Design. Foot Ankle Spec. 2019;12(2):153-8. https://www.ncbi.nlm.nih.gov/pubmed/29779399
31. Kearney RS, Parsons N, Costa ML. Achilles tendinopathy management: A pilot randomised controlled trial comparing platelet-richplasma injection with an eccentric loading programme. Bone Joint Res. 2013;2(10):227-32. https://www.ncbi.nlm.nih.gov/pubmed/24135556
32. Keene DJ, Alsousou J, Harrison P, Hulley P, Wagland S, Parsons SR, et al. Platelet rich plasma injection for acute Achilles tendon rupture: PATH-2 randomised, placebo controlled, superiority trial. BMJ. 2019;367:l6132. https://www.ncbi.nlm.nih.gov/pubmed/31748208
33. Krogh TP, Ellingsen T, Christensen R, Jensen P, Fredberg U. Ultrasound-Guided Injection Therapy of Achilles Tendinopathy With Platelet-Rich Plasma or Saline: A Randomized, Blinded, Placebo-Controlled Trial. Am J Sports Med. 2016;44(8):1990-7. https://www.ncbi.nlm.nih.gov/pubmed/27257167
34. Laver L, Carmont MR, McConkey MO, Palmanovich E, Yaacobi E, Mann G, et al. Plasma rich in growth factors (PRGF) as a treatment for high ankle sprain in elite athletes: a randomized control trial. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3383-92. https://www.ncbi.nlm.nih.gov/pubmed/24938396
35. Mahindra P, Yamin M, Selhi HS, Singla S, Soni A. Chronic Plantar Fasciitis: Effect of Platelet-Rich Plasma, Corticosteroid, and Placebo. Orthopedics. 2016;39(2):e285-9. https://www.ncbi.nlm.nih.gov/pubmed/26913766
36. Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, et al. Platelet-rich plasma injections in acute muscle injury. N Engl J Med. 2014;370(26):2546-7. https://www.ncbi.nlm.nih.gov/pubmed/24963588
37. Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, et al. Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study. Br J Sports Med. 2015;49(18):1206-12. https://www.ncbi.nlm.nih.gov/pubmed/25940636
38. Rossi LA, Molina Romoli AR, Bertona Altieri BA, Burgos Flor JA, Scordo WE, Elizondo CM. Does platelet-rich plasma decrease time to return to sports in acute muscle tear? A randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(10):3319-25. https://www.ncbi.nlm.nih.gov/pubmed/27085364
39. Scott A, LaPrade RF, Harmon KG, Filardo G, Kon E, Della Villa S, et al. Platelet-Rich Plasma for Patellar Tendinopathy: A Randomized Controlled Trial of Leukocyte-Rich PRP or Leukocyte-Poor PRP Versus Saline. Am J Sports Med. 2019;47(7):1654-61. https://www.ncbi.nlm.nih.gov/pubmed/31038979
40. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-34. https://www.ncbi.nlm.nih.gov/pubmed/19631507
41. Mattacola CG, Dwyer MK. Rehabilitation of the Ankle After Acute Sprain or Chronic Instability. J Athl Train. 2002;37(4):413-29. https://www.ncbi.nlm.nih.gov/pubmed/12937563
42. Alghadir AH, Anwer S, Iqbal A, Iqbal ZA. Test-retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J Pain Res. 2018;11:851-6. https://www.ncbi.nlm.nih.gov/pubmed/29731662
43. Nilsson-Helander K, Thomee R, Silbernagel KG, Thomee P, Faxen E, Eriksson BI, et al. The Achilles tendon Total Rupture Score (ATRS): development and validation. Am J Sports Med. 2007;35(3):421-6. https://www.ncbi.nlm.nih.gov/pubmed/17158277
44. Coster MC, Rosengren BE, Bremander A, Brudin L, Karlsson MK. Comparison of the Self-reported Foot and Ankle Score (SEFAS) and the American Orthopedic Foot and Ankle Society Score (AOFAS). Foot Ankle Int. 2014;35(10):1031-6. https://www.ncbi.nlm.nih.gov/pubmed/25015390
45. Dawson J, Doll H, Coffey J, Jenkinson C, Oxford, Birmingham F, et al. Responsiveness and minimally important change for the Manchester-Oxford foot questionnaire (MOXFQ) compared with AOFAS and SF-36 assessments following surgery for hallux valgus. Osteoarthritis Cartilage. 2007;15(8):918-31. https://www.ncbi.nlm.nih.gov/pubmed/17383907
46. Ibrahim T, Beiri A, Azzabi M, Best AJ, Taylor GJ, Menon DK. Reliability and validity of the subjective component of the American Orthopaedic Foot and Ankle Society clinical rating scales. J Foot Ankle Surg. 2007;46(2):65-74. https://www.ncbi.nlm.nih.gov/pubmed/17331864
47. Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int. 1994;15(7):349-53. https://www.ncbi.nlm.nih.gov/pubmed/7951968
48. Eechaute C, Vaes P, Van Aerschot L, Asman S, Duquet W. The clinimetric qualities of patient-assessed instruments for measuring chronic ankle instability: a systematic review. BMC Musculoskelet Disord. 2007;8:6. https://www.ncbi.nlm.nih.gov/pubmed/17233912
49. Hale SA, Hertel J. Reliability and Sensitivity of the Foot and Ankle Disability Index in Subjects With Chronic Ankle Instability. J Athl Train. 2005;40(1):35-40. https://www.ncbi.nlm.nih.gov/pubmed/15902322
50. Jacquet C, Pioger C, Khakha R, Steltzlen C, Kley K, Pujol N, et al. Evaluation of the "Minimal Clinically Important Difference" (MCID) of the KOOS, KSS and SF-12 scores after open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2021;29(3):820-6. https://www.ncbi.nlm.nih.gov/pubmed/32342141
51. Roos EM, Lohmander LS. The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64. https://www.ncbi.nlm.nih.gov/pubmed/14613558
52. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. J Orthop Sports Phys Ther. 1998;28(2):88-96. https://www.ncbi.nlm.nih.gov/pubmed/9699158
53. Korakakis V, Whiteley R, Kotsifaki A, Stefanakis M, Sotiralis Y, Thorborg K. A systematic review evaluating the clinimetric properties of the Victorian Institute of Sport Assessment (VISA) questionnaires for lower limb tendinopathy shows moderate to high-quality evidence for sufficient reliability, validity and responsiveness-part II. Knee Surg Sports Traumatol Arthrosc. 2021;29(9):2765-88. https://www.ncbi.nlm.nih.gov/pubmed/33860806
54. Kim MS, Koh IJ, Choi KY, Sung YG, Park DC, Lee HJ, et al. The Minimal Clinically Important Difference (MCID) for the WOMAC and Factors Related to Achievement of the MCID After Medial Opening Wedge High Tibial Osteotomy for Knee Osteoarthritis. Am J Sports Med. 2021;49(9):2406-15. https://www.ncbi.nlm.nih.gov/pubmed/34115533
55. Salaffi F, Leardini G, Canesi B, Mannoni A, Fioravanti A, Caporali R, et al. Reliability and validity of the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index in Italian patients with osteoarthritis of the knee. Osteoarthritis Cartilage. 2003;11(8):551-60. https://www.ncbi.nlm.nih.gov/pubmed/12880577
56. Feng YS, Kohlmann T, Janssen MF, Buchholz I. Psychometric properties of the EQ-5D-5L: a systematic review of the literature. Qual Life Res. 2021;30(3):647-73. https://www.ncbi.nlm.nih.gov/pubmed/33284428
57. Grobet C, Marks M, Tecklenburg L, Audige L. Application and measurement properties of EQ-5D to measure quality of life in patients with upper extremity orthopaedic disorders: a systematic literature review. Arch Orthop Trauma Surg. 2018;138(7):953-61. https://www.ncbi.nlm.nih.gov/pubmed/29654354
58. Marti C, Hensler S, Herren DB, Niedermann K, Marks M. Measurement properties of the EuroQoL EQ-5D-5L to assess quality of life in patients undergoing carpal tunnel release. J Hand Surg Eur Vol. 2016;41(9):957-62. https://www.ncbi.nlm.nih.gov/pubmed/27435748
59. Brigden A, Parslow RM, Gaunt D, Collin SM, Jones A, Crawley E. Defining the minimally clinically important difference of the SF-36 physical function subscale for paediatric CFS/ME: triangulation using three different methods. Health Qual Life Outcomes. 2018;16(1):202. https://www.ncbi.nlm.nih.gov/pubmed/30340599
60. Pan Y, Barnhart HX. Methods for assessing the reliability of quality of life based on SF-36. Stat Med. 2016;35(30):5656-65. https://www.ncbi.nlm.nih.gov/pubmed/27554251
61. Uehara K, Ogura K, Akiyama T, Shinoda Y, Iwata S, Kobayashi E, et al. Reliability and Validity of the Musculoskeletal Tumor Society Scoring System for the Upper Extremity in Japanese Patients. Clin Orthop Relat Res. 2017;475(9):2253-9. https://www.ncbi.nlm.nih.gov/pubmed/28560530
62. Furlan AD, Malmivaara A, Chou R, Maher CG, Deyo RA, Schoene M, et al. 2015 Updated Method Guideline for Systematic Reviews in the Cochrane Back and Neck Group. Spine (Phila Pa 1976). 2015;40(21):1660-73. https://www.ncbi.nlm.nih.gov/pubmed/26208232
63. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6. https://www.ncbi.nlm.nih.gov/pubmed/18436948
64. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 2014;9(2):e87987. https://www.ncbi.nlm.nih.gov/pubmed/24505342
65. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-60. https://www.ncbi.nlm.nih.gov/pubmed/12958120
66. Cohen J. Statisical Power Analysis for the Behavioral Science. 2nd ed. Hillsdale, NJ: Lawrence Earlbaum Associates; 1998.