Regenerative Rehabilitation for Lateral Epicondylalgia

Main Article Content

Brian Russ
Kelby Kaplan
Kristina Marie Martin


Lateral epicondylalgia, epicondylitis, regenerative rehabilitation, eccentric exercise, heavy-slow resistance exercise, tendinopathy


Lateral epicondylalgia (LE) is a common condition of the elbow that causes significant pain and disability resulting in economic burden and loss of function. Causes of LE include overuse leading to local tendinopathy, neuropathic mechanisms, and impairments in regions proximal and distal to the elbow such as the wrist, cervical spine, and shoulder girdle. Physical therapy and other forms of conservative rehabilitation are often utilized successfully and include interventions such as exercise, joint, and soft tissue manipulation, and various modalities such as ultrasound and extracorporeal shockwave therapy. However, despite the reported benefits of exercise and other rehabilitative interventions, most research regarding treatment efficacy has focused on functional outcomes without understanding the cellular and molecular effects. Moreover, inconsistencies in the literature remain regarding best-practice management for LE. Nevertheless, recent investigations have provided insight into the corrective processes that may occur with commonly employed rehabilitative procedures. This article will give an overview of the pathophysiological process associated with LE followed by a detailed discussion of the current understanding of the cellular and molecular mechanisms that may occur with conservative rehabilitation. The purpose of this paper is to present the current evidence regarding conservative rehabilitation to exemplify how these interventions may serve as an adjunct to biological therapies.

Abstract 58 | PDF Downloads 41


1. Calfee RP, Patel A, DaSilva MF, Akelman E. Management of lateral epicondylitis: current concepts. J Am Acad Orthop Surg. 2008;16:19-29. doi: 10.5435/00124635-200801000-00004
2. Degen RM, Conti MS, Camp CL, Altchek DW, Dines JS, Werner BC. Epidemiology and Disease Burden of Lateral Epicondylitis in the USA: Analysis of 85,318 Patients. HSS J. 2018;14:9-14. doi: 10.1007/s11420-017-9559-3
3. Hamilton PG. The prevalence of humeral epicondylitis: a survey in general practice. J R Coll Gen Pract. 1986;36:464-465.
4. Sanders TL, Jr., Maradit Kremers H, Bryan AJ, Ransom JE, Smith J, Morrey BF. The epidemiology and health care burden of tennis elbow: a population-based study. Am J Sports Med. 2015;43:1066-1071. doi: 10.1177/0363546514568087
5. Shiri R, Viikari-Juntura E, Varonen H, Heliovaara M. Prevalence and determinants of lateral and medial epicondylitis: a population study. Am J Epidemiol. 2006;164:1065-1074. doi: 10.1093/aje/kwj325
6. Sims SE, Miller K, Elfar JC, Hammert WC. Non-surgical treatment of lateral epicondylitis: a systematic review of randomized controlled trials. Hand (N Y). 2014;9:419-446. doi: 10.1007/s11552-014-9642-x
7. Arvind V, Huang AH. Reparative and Maladaptive Inflammation in Tendon Healing. Front Bioeng Biotechnol. 2021;9:719047. doi: 10.3389/fbioe.2021.719047
8. Taylor SA, Hannafin JA. Evaluation and management of elbow tendinopathy. Sports Health. 2012;4:384-393. doi: 10.1177/1941738112454651
9. Cook JL, Rio E, Purdam CR, Docking SI. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research? Br J Sports Med. 2016;50:1187-1191. doi: 10.1136/bjsports-2015-095422
10. Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43:409-416. doi: 10.1136/bjsm.2008.051193
11. Fernandez-Carnero J, Fernandez-de-las-Penas C, Cleland JA. Immediate hypoalgesic and motor effects after a single cervical spine manipulation in subjects with lateral epicondylalgia. J Manipulative Physiol Ther. 2008;31:675-681. doi: 10.1016/j.jmpt.2008.10.005
12. Muhsen A, Moss P, Gibson W, Walker B, Jacques A, Schug S, Wright A. The Association Between Conditioned Pain Modulation and Manipulation-induced Analgesia in People With Lateral Epicondylalgia. Clin J Pain. 2019;35:435-442. doi: 10.1097/AJP.0000000000000696
13. Day JM, Lucado AM, Dale RB, Merriman H, Marker CD, Uhl TL. The Effect of Scapular Muscle Strengthening on Functional Recovery in Patients With Lateral Elbow Tendinopathy: A Pilot Randomized Controlled Trial. J Sport Rehabil. 2021;30:744-753. doi: 10.1123/jsr.2020-0203
14. Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015;29:153-162. doi: 10.1016/j.blre.2014.10.003
15. Chisari E, Rehak L, Khan WS, Maffulli N. Tendon healing is adversely affected by low-grade inflammation. J Orthop Surg Res. 2021;16:700. doi: 10.1186/s13018-021-02811-w
16. Danielson P, Alfredson H, Forsgren S. Distribution of general (PGP 9.5) and sensory (substance P/CGRP) innervations in the human patellar tendon. Knee Surg Sports Traumatol Arthrosc. 2006;14:125-132. doi: 10.1007/s00167-005-0636-7
17. McCreesh K, Lewis J. Continuum model of tendon pathology - where are we now? Int J Exp Pathol. 2013;94:242-247. doi: 10.1111/iep.12029
18. Coombes BK, Bisset L, Vicenzino B. A new integrative model of lateral epicondylalgia. Br J Sports Med. 2009;43:252-258. doi: 10.1136/bjsm.2008.052738
19. Hoksrud A, Ohberg L, Alfredson H, Bahr R. Color Doppler ultrasound findings in patellar tendinopathy (jumper’s knee). Am J Sports Med. 2008;36:1813-1820. doi: 10.1177/0363546508319897
20. Clarke AW, Ahmad M, Curtis M, Connell DA. Lateral elbow tendinopathy: correlation of ultrasound findings with pain and functional disability. Am J Sports Med. 2010;38:1209-1214. doi: 10.1177/0363546509359066
21. Han SH, Kim HK, Jang Y, Lee HH, Rhie J, Han D, Oh J, Lee S. The expression of substance P and calcitonin gene-related peptide is associated with the severity of tendon degeneration in lateral epicondylitis. BMC Musculoskelet Disord. 2021;22:210. doi: 10.1186/s12891-021-04067-1
22. Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol. 2010;6:262-268. doi: 10.1038/nrrheum.2010.43
23. Ljung BO, Lieber RL, Friden J. Wrist extensor muscle pathology in lateral epicondylitis. J Hand Surg Br. 1999;24:177-183. doi: 10.1054/jhsb.1998.0178
24. Fernandez-Carnero J, Fernandez-de-Las-Penas C, de la Llave-Rincon AI, Ge HY, Arendt-Nielsen L. Widespread mechanical pain hypersensitivity as sign of central sensitization in unilateral epicondylalgia: a blinded, controlled study. Clin J Pain. 2009;25:555-561. doi: 10.1097/AJP.0b013e3181a68a040
25. Fernandez-Carnero J, Fernandez-de-las-Penas C, Sterling M, Souvlis T, Arendt-Nielsen L, Vicenzino B. Exploration of the extent of somato-sensory impairment in patients with unilateral lateral epicondylalgia. J Pain. 2009;10:1179-1185. doi: 10.1016/j.jpain.2009.04.015
26. Fernandez-de-Las-Penas C, Ortega-Santiago R, Ambite-Quesada S, Jimenez-Garci AR, Arroyo-Morales M, Cleland JA. Specific mechanical pain hypersensitivity over peripheral nerve trunks in women with either unilateral epicondylalgia or carpal tunnel syndrome. J Orthop Sports Phys Ther. 2010;40:751-760. doi: 10.2519/jospt.2010.3331
27. Jespersen A, Amris K, Graven-Nielsen T, Arendt-Nielsen L, Bartels EM, Torp-Pedersen S, Bliddal H, Danneskiold-Samsoe B. Assessment of pressure-pain thresholds and central sensitization of pain in lateral epicondylalgia. Pain Med. 2013;14:297-304. doi: 10.1111/pme.12021
28. Murtaugh B, Ihm JM. Eccentric training for the treatment of tendinopathies. Curr Sports Med Rep. 2013;12:175-182. doi: 10.1249/JSR.0b013e3182933761
29. Morrison S, Cook J. Putting “Heavy” into Heavy Slow Resistance. Sports Med. 2022;52:1219-1222. doi: 10.1007/s40279-022-01641-y
30. McQueen KS, Powell RK, Keener T, Whalley R, Calfee RP. Role of strengthening during nonoperative treatment of lateral epicondyle tendinopathy. J Hand Ther. 2021;34:619-626. doi: 10.1016/j.jht.2020.10.009
31. Khan KM, Scott A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med. 2009;43:247-252. doi: 10.1136/bjsm.2008.054239
32. Cullinane FL, Boocock MG, Trevelyan FC. Is eccentric exercise an effective treatment for lateral epicondylitis? A systematic review. Clin Rehabil. 2014;28:3-19. doi: 10.1177/0269215513491974
33. Ortega-Castillo M, Medina-Porqueres I. Effectiveness of the eccentric exercise therapy in physically active adults with symptomatic shoulder impingement or lateral epicondylar tendinopathy: A systematic review. J Sci Med Sport. 2016;19:438-453. doi: 10.1016/j.jsams.2015.06.007
34. Raman J, MacDermid JC, Grewal R. Effectiveness of different methods of resistance exercises in lateral epicondylosis--a systematic review. J Hand Ther. 2012;25:5-25; quiz 26. doi: 10.1016/j.jht.2011.09.001
35. Martinez-Silvestrini JA, Newcomer KL, Gay RE, Schaefer MP, Kortebein P, Arendt KW. Chronic lateral epicondylitis: comparative effectiveness of a home exercise program including stretching alone versus stretching supplemented with eccentric or concentric strengthening. J Hand Ther. 2005;18:411-419, quiz 420. doi: 10.1197/j.jht.2005.07.007
36. Tyler TF, Thomas GC, Nicholas SJ, McHugh MP. Addition of isolated wrist extensor eccentric exercise to standard treatment for chronic lateral epicondylosis: a prospective randomized trial. J Shoulder Elbow Surg. 2010;19:917-922. doi: 10.1016/j.jse.2010.04.041
37. Peterson M, Butler S, Eriksson M, Svardsudd K. A randomized controlled trial of eccentric vs. concentric graded exercise in chronic tennis elbow (lateral elbow tendinopathy). Clin Rehabil. 2014;28:862-872. doi: 10.1177/0269215514527595
38. Yoon SY, Kim YW, Shin IS, Kang S, Moon HI, Lee SC. The Beneficial Effects of Eccentric Exercise in the Management of Lateral Elbow Tendinopathy: A Systematic Review and Meta-Analysis. J Clin Med. 2021;10. doi: 10.3390/jcm10173968
39. Beyer R, Kongsgaard M, Hougs Kjaer B, Ohlenschlaeger T, Kjaer M, Magnusson SP. Heavy Slow Resistance Versus Eccentric Training as Treatment for Achilles Tendinopathy: A Randomized Controlled Trial. Am J Sports Med. 2015;43:1704-1711. doi: 10.1177/0363546515584760
40. Drew BT, Smith TO, Littlewood C, Sturrock B. Do structural changes (eg, collagen/matrix) explain the response to therapeutic exercises in tendinopathy: a systematic review. Br J Sports Med. 2014;48:966-972. doi: 10.1136/bjsports-2012-091285
41. Rabello LM, van den Akker-Scheek I, Brink MS, Maas M, Diercks RL, Zwerver J. Association Between Clinical and Imaging Outcomes After Therapeutic Loading Exercise in Patients Diagnosed With Achilles or Patellar Tendinopathy at Short- and Long-Term Follow-up: A Systematic Review. Clin J Sport Med. 2020;30:390-403. doi: 10.1097/JSM.0000000000000624
42. Stasinopoulos D, Stasinopoulos I. Comparison of effects of Cyriax physiotherapy, a supervised exercise programme and polarized polychromatic non-coherent light (Bioptron light) for the treatment of lateral epicondylitis. Clin Rehabil. 2006;20:12-23. doi: 10.1191/0269215506cr921oa
43. Croisier JL, Foidart-Dessalle M, Tinant F, Crielaard JM, Forthomme B. An isokinetic eccentric programme for the management of chronic lateral epicondylar tendinopathy. Br J Sports Med. 2007;41:269-275. doi: 10.1136/bjsm.2006.033324
44. Langberg H, Ellingsgaard H, Madsen T, Jansson J, Magnusson SP, Aagaard P, Kjaer M. Eccentric rehabilitation exercise increases peritendinous type I collagen synthesis in humans with Achilles tendinosis. Scand J Med Sci Sports. 2007;17:61-66. doi: 10.1111/j.1600-0838.2006.00522.x
45. Ohberg L, Alfredson H. Effects on neovascularisation behind the good results with eccentric training in chronic mid-portion Achilles tendinosis? Knee Surg Sports Traumatol Arthrosc. 2004;12:465-470. doi: 10.1007/s00167-004-0494-8
46. Farnqvist K, Pearson S, Malliaras P. Adaptation of Tendon Structure and Function in Tendinopathy With Exercise and Its Relationship to Clinical Outcome. J Sport Rehabil. 2020;29:107-115. doi: 10.1123/jsr.2018-0353
47. Docherty S, Harley R, McAuley JJ, Crowe LAN, Pedret C, Kirwan PD, Siebert S, Millar NL. The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review. BMC Sports Science, Medicine and Rehabilitation. 2022;14:5. doi: 10.1186/s13102-022-00397-2
48. Hirose L, Nosaka K, Newton M, Laveder A, Kano M, Peake J, Suzuki K. Changes in inflammatory mediators following eccentric exercise of the elbow flexors. Exerc Immunol Rev. 2004;10:75-90.
49. Smith LL, Anwar A, Fragen M, Rananto C, Johnson R, Holbert D. Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise. Eur J Appl Physiol. 2000;82:61-67. doi: 10.1007/s004210050652
50. Smith LL, McKune AJ, Semple SJ, Sibanda E, Steel H, Anderson R. Changes in serum cytokines after repeated bouts of downhill running. Appl Physiol Nutr Metab. 2007;32:233-240. doi: 10.1139/h06-106
51. Conceicao MS, Libardi CA, Nogueira FR, Bonganha V, Gaspari AF, Chacon-Mikahil MP, Cavaglieri CR, Madruga VA. Effects of eccentric exercise on systemic concentrations of pro- and anti-inflammatory cytokines and prostaglandin (E2): comparison between young and postmenopausal women. Eur J Appl Physiol. 2012;112:3205-3213. doi: 10.1007/s00421-011-2292-6
52. Riley GP. Gene expression and matrix turnover in overused and damaged tendons. Scand J Med Sci Sports. 2005;15:241-251. doi: 10.1111/j.1600-0838.2005.00456.x
53. Millar NL, Wei AQ, Molloy TJ, Bonar F, Murrell GA. Cytokines and apoptosis in supraspinatus tendinopathy. J Bone Joint Surg Br. 2009;91:417-424. doi: 10.1302/0301-620X.91B3.21652
54. Alvarez P, Bogen O, Green PG, Levine JD. Nociceptor interleukin 10 receptor 1 is critical for muscle analgesia induced by repeated bouts of eccentric exercise in the rat. Pain. 2017;158:1481-1488. doi: 10.1097/j.pain.0000000000000936
55. Ochi E, Nakazato K, Ishii N. Muscular hypertrophy and changes in cytokine production after eccentric training in the rat skeletal muscle. J Strength Cond Res. 2011;25:2283-2292. doi: 10.1519/JSC.0b013e3181f1592e
56. Cornish SM, Johnson ST. Systemic cytokine response to three bouts of eccentric exercise. Results Immunol. 2014;4:23-29. doi: 10.1016/j.rinim.2014.04.002
57. Lim HY, Wong SH. Effects of isometric, eccentric, or heavy slow resistance exercises on pain and function in individuals with patellar tendinopathy: A systematic review. Physiother Res Int. 2018;23:e1721. doi: 10.1002/pri.1721
58. Kongsgaard M, Qvortrup K, Larsen J, Aagaard P, Doessing S, Hansen P, Kjaer M, Magnusson SP. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training. Am J Sports Med. 2010;38:749-756. doi: 10.1177/0363546509350915
59. Murphy MC, Travers MJ, Chivers P, Debenham JR, Docking SI, Rio EK, Gibson W. Efficacy of heavy eccentric calf training for treating mid-portion Achilles tendinopathy: a systematic review and meta-analysis. Br J Sports Med. 2019;53:1070-1077. doi: 10.1136/bjsports-2018-099934
60. Jayaseelan DJ, Mischke JJ, Strazzulla RL. Eccentric Exercise for Achilles Tendinopathy: A Narrative Review and Clinical Decision-Making Considerations. J Funct Morphol Kinesiol. 2019;4. doi: 10.3390/jfmk4020034
61. Wilson F, Walshe M, O’Dwyer T, Bennett K, Mockler D, Bleakley C. Exercise, orthoses and splinting for treating Achilles tendinopathy: a systematic review with meta-analysis. Br J Sports Med. 2018;52:1564-1574. doi: 10.1136/bjsports-2017-098913
62. Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes : a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med. 2013;43:267-286. doi: 10.1007/s40279-013-0019-z
63. American Physical Therapy A. Guide to physical therapist practice 3.0. 2014.
64. Lutke Schipholt IJ, Coppieters MW, Meijer OG, Tompra N, de Vries RBM, Scholten-Peeters GGM. Effects of joint and nerve mobilisation on neuroimmune responses in animals and humans with neuromusculoskeletal conditions: a systematic review and meta-analysis. Pain Rep. 2021;6:e927. doi: 10.1097/PR9.0000000000000927
65. Mulligan BR. Manual therapy : nags, snags, mwms, etc. Wellington, N.Z.: Plane View Services Ltd; 2004.
66. Lewit K. Manipulative therapy in rehabilitation of the locomotor system. London; Boston: Butterworths; 1985.
67. Schaible HG, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain. 1993;55:5-54. doi: 10.1016/0304-3959(93)90183-P
68. Treatment of Tennis Elbow*.
69. Mills GP. The Treatment Of “Tennis Elbow.”. British Medical Journal. 1928;1:12-13. doi: 10.1136/bmj.1.3496.12
70. Stasinopoulos D, Johnson MI. Cyriax physiotherapy for tennis elbow/lateral epicondylitis. Br J Sports Med. 2004;38:675-677. doi: 10.1136/bjsm.2004.013573
71. Chiu TW, Wright A. To compare the effects of different rates of application of a cervical mobilisation technique on sympathetic outflow to the upper limb in normal subjects. Man Ther. 1996;1:198-203. doi: 10.1054/math.1996.0269
72. Galindez-Ibarbengoetxea X, Setuain I, Andersen LL, Ramirez-Velez R, Gonzalez-Izal M, Jauregi A, Izquierdo M. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review. J Altern Complement Med. 2017;23:667-675. doi: 10.1089/acm.2017.0002
73. McGuiness J, Vicenzino B, Wright A. Influence of a cervical mobilization technique on respiratory and cardiovascular function. Man Ther. 1997;2:216-220. doi: 10.1054/math.1997.0302
74. Sterling M, Jull G, Wright A. Cervical mobilisation: concurrent effects on pain, sympathetic nervous system activity and motor activity. Man Ther. 2001;6:72-81. doi: 10.1054/math.2000.0378
75. Vicenzino B, Collins D, Benson H, Wright A. An investigation of the interrelationship between manipulative therapy-induced hypoalgesia and sympathoexcitation. J Manipulative Physiol Ther. 1998;21:448-453.
76. Vicenzino B, Paungmali A, Buratowski S, Wright A. Specific manipulative therapy treatment for chronic lateral epicondylalgia produces uniquely characteristic hypoalgesia. Man Ther. 2001;6:205-212. doi: 10.1054/math.2001.0411
77. Paungmali A, O’Leary S, Souvlis T, Vicenzino B. Hypoalgesic and sympathoexcitatory effects of mobilization with movement for lateral epicondylalgia. Phys Ther. 2003;83:374-383.
78. Paungmali A, O’Leary S, Souvlis T, Vicenzino B. Naloxone fails to antagonize initial hypoalgesic effect of a manual therapy treatment for lateral epicondylalgia. J Manipulative Physiol Ther. 2004;27:180-185. doi: 10.1016/j.jmpt.2003.12.022
79. Portillo-Soto A, Eberman LE, Demchak TJ, Peebles C. Comparison of blood flow changes with soft tissue mobilization and massage therapy. J Altern Complement Med. 2014;20:932-936. doi: 10.1089/acm.2014.0160
80. Loew LM, Brosseau L, Tugwell P, Wells GA, Welch V, Shea B, Poitras S, De Angelis G, Rahman P. Deep transverse friction massage for treating lateral elbow or lateral knee tendinitis. Cochrane Database Syst Rev. 2014:CD003528. doi: 10.1002/14651858.CD003528.pub2
81. Walker JM. Deep transverse frictions in ligament healing*. J Orthop Sports Phys Ther. 1984;6:89-94. doi: 10.2519/jospt.1984.6.2.89
82. Best TM, Gharaibeh B, Huard J. Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Postgrad Med J. 2013;89:666-670. doi: 10.1136/postgradmedj-2012-091685rep
83. Loghmani M, Whitted M. Soft Tissue Manipulation: A Powerful Form of Mechanotherapy. Journal of Physiotherapy & Physical Rehabilitation. 2016;01. doi: 10.4172/2573-0312.1000122
84. Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM, Tarnopolsky MA. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med. 2012;4:119ra113. doi: 10.1126/scitranslmed.3002882
85. Waters-Banker C, Dupont-Versteegden EE, Kitzman PH, Butterfield TA. Investigating the mechanisms of massage efficacy: the role of mechanical immunomodulation. J Athl Train. 2014;49:266-273. doi: 10.4085/1062-6050-49.2.25
86. Sefton JM, Yarar C, Berry JW, Pascoe DD. Therapeutic massage of the neck and shoulders produces changes in peripheral blood flow when assessed with dynamic infrared thermography. J Altern Complement Med. 2010;16:723-732. doi: 10.1089/acm.2009.0441
87. Nee RJ, Butler D. Management of peripheral neuropathic pain: Integrating neurobiology, neurodynamics, and clinical evidence. Physical Therapy in Sport. 2006;7:36-49. doi:
88. Yaxley GA, Jull GA. Adverse tension in the neural system. A preliminary study of tennis elbow. Aust J Physiother. 1993;39:15-22. doi: 10.1016/S0004-9514(14)60465-7
89. Izzi J, Dennison D, Noerdlinger M, Dasilva M, Akelman E. Nerve injuries of the elbow, wrist, and hand in athletes. Clin Sports Med. 2001;20:203-217. doi: 10.1016/s0278-5919(05)70256-8
90. Ellis R, Carta G, Andrade RJ, Coppieters MW. Neurodynamics: is tension contentious? J Man Manip Ther. 2022;30:3-12. doi: 10.1080/10669817.2021.2001736
91. Basson A, Olivier B, Ellis R, Coppieters M, Stewart A, Mudzi W. The Effectiveness of Neural Mobilization for Neuromusculoskeletal Conditions: A Systematic Review and Meta-analysis. J Orthop Sports Phys Ther. 2017;47:593-615. doi: 10.2519/jospt.2017.7117
92. Higgins S, Lee JS, Ha L, Lim JY. Inducing neurite outgrowth by mechanical cell stretch. Biores Open Access. 2013;2:212-216. doi: 10.1089/biores.2013.0008
93. Carta G, Gambarotta G, Fornasari BE, Muratori L, El Soury M, Geuna S, Raimondo S, Fregnan F. The neurodynamic treatment induces biological changes in sensory and motor neurons in vitro. Sci Rep. 2021;11:13277. doi: 10.1038/s41598-021-92682-2
94. van Wilgen CP, Testa M. Proceedings of Pain Science in Motion Colloquium-3rd edition. May 31st-June 2nd, University of Genoa-Campus of Savona, Italy: Giving insight in pain research of tomorrow! Pain Rep. 2019;4:e753. doi: 10.1097/PR9.0000000000000753
95. Loverde JR, Tolentino RE, Pfister BJ. Axon stretch growth: the mechanotransduction of neuronal growth. J Vis Exp. 2011. doi: 10.3791/2753
96. Simplicio CL, Purita J, Murrell W, Santos GS, Dos Santos RG, Lana J. Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine. J Clin Orthop Trauma. 2020;11:S309-S318. doi: 10.1016/j.jcot.2020.02.004
97. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012;7:11. doi: 10.1186/1749-799X-7-11
98. Kuo YR, Wang CT, Wang FS, Chiang YC, Wang CJ. Extracorporeal shockwave therapy enhanced wound healing via increasing topical blood perfusion and tissue regeneration in a rat model of STZ-induced diabetes. Wound Repair Regen. 2009;17:522-530. doi: 10.1111/j.1524-475X.2009.00504.x
99. Rogoveanu OC, Musetescu AE, Gofita CE, Traistaru MR. The Effectiveness of Shockwave Therapy in Patients with Lateral Epicondylitis. Curr Health Sci J. 2018;44:368-373. doi: 10.12865/CHSJ.44.04.08
100. Haupt G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M. Influence of shock waves on fracture healing. Urology. 1992;39:529-532. doi: 10.1016/0090-4295(92)90009-l
101. Notarnicola A, Moretti B. The biological effects of extracorporeal shock wave therapy (eswt) on tendon tissue. Muscles Ligaments Tendons J. 2012;2:33-37.
102. Bosch G, Lin YL, van Schie HT, van De Lest CH, Barneveld A, van Weeren PR. Effect of extracorporeal shock wave therapy on the biochemical composition and metabolic activity of tenocytes in normal tendinous structures in ponies. Equine Vet J. 2007;39:226-231. doi: 10.2746/042516407x180408
103. Wang CJ, Huang HY, Pai CH. Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs. J Foot Ankle Surg. 2002;41:16-22. doi: 10.1016/s1067-2516(02)80005-9
104. Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, Yang LC. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res. 2003;21:984-989. doi: 10.1016/S0736-0266(03)00104-9
105. Tempfer H, Traweger A. Tendon Vasculature in Health and Disease. Front Physiol. 2015;6:330. doi: 10.3389/fphys.2015.00330
106. Zhang S, Li H, Yao W, Hua Y, Li Y. Therapeutic Response of Extracorporeal Shock Wave Therapy for Insertional Achilles Tendinopathy Between Sports-Active and Nonsports-Active Patients With 5-Year Follow-up. Orthop J Sports Med. 2020;8:2325967119898118. doi: 10.1177/2325967119898118
107. Bosch G, de Mos M, van Binsbergen R, van Schie HT, van de Lest CH, van Weeren PR. The effect of focused extracorporeal shock wave therapy on collagen matrix and gene expression in normal tendons and ligaments. Equine Vet J. 2009;41:335-341. doi: 10.2746/042516409x370766
108. Zhang D, Kearney CJ, Cheriyan T, Schmid TM, Spector M. Extracorporeal shockwave-induced expression of lubricin in tendons and septa. Cell Tissue Res. 2011;346:255-262. doi: 10.1007/s00441-011-1258-7
109. Vetrano M, d’Alessandro F, Torrisi MR, Ferretti A, Vulpiani MC, Visco V. Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg Sports Traumatol Arthrosc. 2011;19:2159-2168. doi: 10.1007/s00167-011-1534-9
110. Han SH, Lee JW, Guyton GP, Parks BG, Courneya JP, Schon LC. J.Leonard Goldner Award 2008. Effect of extracorporeal shock wave therapy on cultured tenocytes. Foot Ankle Int. 2009;30:93-98. doi: 10.3113/FAI.2009.0093
111. Bisset L, Paungmali A, Vicenzino B, Beller E. A systematic review and meta-analysis of clinical trials on physical interventions for lateral epicondylalgia. Br J Sports Med. 2005;39:411-422; discussion 411-422. doi: 10.1136/bjsm.2004.016170
112. Boddeker I, Haake M. [Extracorporeal shockwave therapy in treatment of epicondylitis humeri radialis. A current overview]. Orthopade. 2000;29:463-469. doi: 10.1007/s001320050468
113. Gattie E, Cleland JA, Snodgrass S. The Effectiveness of Trigger Point Dry Needling for Musculoskeletal Conditions by Physical Therapists: A Systematic Review and Meta-analysis. J Orthop Sports Phys Ther. 2017;47:133-149. doi: 10.2519/jospt.2017.7096
114. Dunning J, Butts R, Mourad F, Young I, Flannagan S, Perreault T. Dry needling: a literature review with implications for clinical practice guidelines. Phys Ther Rev. 2014;19:252-265. doi: 10.1179/108331913X13844245102034
115. Stoychev V, Finestone AS, Kalichman L. Dry Needling as a Treatment Modality for Tendinopathy: a Narrative Review. Curr Rev Musculoskelet Med. 2020;13:133-140. doi: 10.1007/s12178-020-09608-0
116. Calderon-Diez L, Sanchez-Sanchez JL, Herrero-Turrion J, Cleland J, Arias-Buria JL, Fernandez-de-Las-Penas C. Dry Needling of a Healthy Rat Achilles Tendon Increases Its Gene Expressions: A Pilot Study. Pain Med. 2021;22:112-117. doi: 10.1093/pm/pnaa352
117. Riggin CN, Chen M, Gordon JA, Schultz SM, Soslowsky LJ, Khoury V. Ultrasound-Guided Dry Needling of the Healthy Rat Supraspinatus Tendon Elicits Early Healing Without Causing Permanent Damage. J Orthop Res. 2019;37:2035-2042. doi: 10.1002/jor.24329
118. Navarro-Santana MJ, Sanchez-Infante J, Gomez-Chiguano GF, Cleland JA, Lopez-de-Uralde-Villanueva I, Fernandez-de-Las-Penas C, Plaza-Manzano G. Effects of trigger point dry needling on lateral epicondylalgia of musculoskeletal origin: a systematic review and meta-analysis. Clin Rehabil. 2020;34:1327-1340. doi: 10.1177/0269215520937468
119. Uygur E, Aktaş B, Yilmazoglu EG. The use of dry needling vs. corticosteroid injection to treat lateral epicondylitis: a prospective, randomized, controlled study. J Shoulder Elbow Surg. 2021;30:134-139. doi: 10.1016/j.jse.2020.08.044
120. Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, Abe T, Nielsen JL, Libardi CA, Laurentino G, et al. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol. 2019;10:533. doi: 10.3389/fphys.2019.00533
121. Counts BR, Dankel SJ, Barnett BE, Kim D, Mouser JG, Allen KM, Thiebaud RS, Abe T, Bemben MG, Loenneke JP. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016;53:438-445. doi: 10.1002/mus.24756
122. Rossi FE, de Freitas MC, Zanchi NE, Lira FS, Cholewa JM. The Role of Inflammation and Immune Cells in Blood Flow Restriction Training Adaptation: A Review. Front Physiol. 2018;9:1376. doi: 10.3389/fphys.2018.01376
123. Reis JF, Fatela P, Mendonca GV, Vaz JR, Valamatos MJ, Infante J, Mil-Homens P, Alves FB. Tissue Oxygenation in Response to Different Relative Levels of Blood-Flow Restricted Exercise. Front Physiol. 2019;10:407. doi: 10.3389/fphys.2019.00407
124. Jessee MB, Mattocks KT, Buckner SL, Mouser JG, Counts BR, Dankel SJ, Laurentino GC, Loenneke JP. The acute muscular response to blood flow-restricted exercise with very low relative pressure. Clin Physiol Funct Imaging. 2018;38:304-311. doi: 10.1111/cpf.12416
125. Wiesinger HP, Kosters A, Muller E, Seynnes OR. Effects of Increased Loading on In Vivo Tendon Properties: A Systematic Review. Med Sci Sports Exerc. 2015;47:1885-1895. doi: 10.1249/MSS.0000000000000603
126. Centner C, Lauber B, Seynnes OR, Jerger S, Sohnius T, Gollhofer A, Konig D. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training. J Appl Physiol (1985). 2019;127:1660-1667. doi: 10.1152/japplphysiol.00602.2019
127. Centner C, Jerger S, Lauber B, Seynnes O, Friedrich T, Lolli D, Gollhofer A, Konig D. Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties. Med Sci Sports Exerc. 2022;54:582-589. doi: 10.1249/MSS.0000000000002824
128. Brumitt J, Hutchison MK, Kang D, Klemmer Z, Stroud M, Cheng E, Cayanan NP, Shishido S. Blood Flow Restriction Training for the Rotator Cuff: A Randomized Controlled Trial. Int J Sports Physiol Perform. 2020;15:1175-1180. doi: 10.1123/ijspp.2019-0815
129. Hughes L, Patterson SD. The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. J Appl Physiol (1985). 2020;128:914-924. doi: 10.1152/japplphysiol.00768.2019
130. Burton I, McCormack A. Blood Flow Restriction Resistance Training in Tendon Rehabilitation: A Scoping Review on Intervention Parameters, Physiological Effects, and Outcomes. Front Sports Act Living. 2022;4:879860. doi: 10.3389/fspor.2022.879860
131. Lyu K, Liu X, Jiang L, Chen Y, Lu J, Zhu B, Liu X, Li Y, Wang D, Li S. The Functions and Mechanisms of Low-Level Laser Therapy in Tendon Repair (Review). Front Physiol. 2022;13:808374. doi: 10.3389/fphys.2022.808374
132. Doyle AT, Lauber C, Sabine K. The Effects of Low-Level Laser Therapy on Pain Associated With Tendinopathy: A Critically Appraised Topic. J Sport Rehabil. 2016;25:83-90. doi: 10-1123/jsr.2014-0219
133. Akamatsu FE, Teodoro WR, Itezerote AM, da Silveira LKR, Saleh S, Martinez CAR, Ribeiro ML, Pereira JA, Hojaij F, Andrade M, et al. Photobiomodulation therapy increases collagen II after tendon experimental injury. Histol Histopathol. 2021;36:663-674. doi: 10.14670/HH-18-330
134. Chen CH, Tsai JL, Wang YH, Lee CL, Chen JK, Huang MH. Low-level laser irradiation promotes cell proliferation and mRNA expression of type I collagen and decorin in porcine Achilles tendon fibroblasts in vitro. J Orthop Res. 2009;27:646-650. doi: 10.1002/jor.20800
135. Martinelli A, Andreo L, Alves AN, Terena SML, Santos TC, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Photobiomodulation modulates the expression of inflammatory cytokines during the compensatory hypertrophy process in skeletal muscle. Lasers Med Sci. 2021;36:791-802. doi: 10.1007/s10103-020-03095-y
136. Turgay T, Gunel Karadeniz P, Sever GB. Comparison of low level laser therapy and extracorporeal shock wave in treatment of chronic lateral epicondylitis. Acta Orthop Traumatol Turc. 2020;54:591-595. doi: 10.5152/j.aott.2020.19102
137. Martimbianco ALC, Ferreira RES, Latorraca COC, Bussadori SK, Pacheco RL, Riera R. Photobiomodulation with low-level laser therapy for treating Achilles tendinopathy: a systematic review and meta-analysis. Clin Rehabil. 2020;34:713-722. doi: 10.1177/0269215520912820
138. Haslerud S, Magnussen LH, Joensen J, Lopes-Martins RA, Bjordal JM. The efficacy of low-level laser therapy for shoulder tendinopathy: a systematic review and meta-analysis of randomized controlled trials. Physiother Res Int. 2015;20:108-125. doi: 10.1002/pri.1606
139. Moura Junior Mde J, Arisawa EA, Martin AA, de Carvalho JP, da Silva JM, Silva JF, Silveira L, Jr. Effects of low-power LED and therapeutic ultrasound in the tissue healing and inflammation in a tendinitis experimental model in rats. Lasers Med Sci. 2014;29:301-311. doi: 10.1007/s10103-013-1327-0
140. Watson T. Ultrasound in contemporary physiotherapy practice. Ultrasonics. 2008;48:321-329. doi: 10.1016/j.ultras.2008.02.004
141. Ramirez A, Schwane JA, McFarland C, Starcher B. The effect of ultrasound on collagen synthesis and fibroblast proliferation in vitro. Med Sci Sports Exerc. 1997;29:326-332. doi: 10.1097/00005768-199703000-00007
142. Tsai WC, Tang ST, Liang FC. Effect of therapeutic ultrasound on tendons. Am J Phys Med Rehabil. 2011;90:1068-1073. doi: 10.1097/PHM.0b013e31821a70be
143. Nussbaum E. The influence of ultrasound on healing tissues. J Hand Ther. 1998;11:140-147. doi: 10.1016/s0894-1130(98)80012-4
144. Bateman M, Evans JP, Vuvan V, Jones V, Watts AC, Phadnis J, Bisset LM, Vicenzino B, Group C-LA. Development of a core outcome set for lateral elbow tendinopathy (COS-LET) using best available evidence and an international consensus process. Br J Sports Med. 2022;56:657-666. doi: 10.1136/bjsports-2021-105044
145. Stasinopoulos D. Stop Using the Eccentric Exercises as the Gold Standard Treatment for the Management of Lateral Elbow Tendinopathy. J Clin Med. 2022;11. doi: 10.3390/jcm11051325
146. Wright A, Thurnwald P, O’Callaghan J, Smith J, Vicenzino B. Hyperalgesia in Tennis Elbow Patients. Journal of Musculoskeletal Pain. 1994;2:83-97. doi: 10.1300/J094v02n04_07
147. Gibbons P, Tehan P, Greenman PE. Manipulation of the spine, thorax and pelvis : an osteopathic perspective, with accompaning CD-ROM. Edinburgh: Churchill Livingstone; 2000.