CLINICAL APPLICATIONS OF AUTOLOGOUS MICROFRAGMENTED ADIPOSE TISSUE IN CHRONIC TENDINOUS INJURIES: A NARRATIVE REVIEW

Main Article Content

Michael Serra-Jovenich
Oluseun Olufade

Keywords

Lipoaspirate, MFAT, Microfragmented Adipose Tissue, Soft Tissue Injuries, Tendinopathy

Abstract

Tendinopathy is a multifactorial condition influenced by both intrinsic and extrinsic factors, necessitating a tailored, phased-based management approach. While first-line management traditionally involves conservative measures, limited success in chronic cases has galvanized interest in orthobiologic interventions. Autologous lipoaspirate-derived microfragmented adipose tissue (MFAT), a minimally manipulated ortho-biologic, has demonstrated potential in managing chronic tendinopathy. This narrative review explores the clinical application of MFAT in the nonoperative management of chronic tendinous pathologies, focused on preprocedural management, procedural standardization, post-injection protocols, and outcome assessment.

Abstract 57 | PDF Downloads 61

References

1. InformedHealth.org. Overview: Tendon overuse injuries (tendinopathy). Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2022.
2. Kaux JF, Forthomme B, Le Goff C, et al. Current opinions on tendinopathy. J Sports Sci Med. 2011;10(2):238–53.
3. Abadin AA, Orr JP, Lloyd AR, et al. An evidence-based approach to orthobiologics for tendon disorders. Phys Med Rehab Clin N Am. 2023;34(1):83–103. https://doi.org/10.1016/j.pmr.2022.08.007
4. Noback PC, Donnelley CA, Yeatts NC, et al. Utilization of orthobiologics by sports medicine physicians: A survey-based study. J Am Acad Orthop Surg Glob Res Rev. 2021;5(1)e20.00185. https://doi.org/10.5435/JAAOSGlobal-D-20-00185
5. US Food and Drug Administration. Regulatory considerations for human cells, tissues, and cellular and tissue-based products: Minimal manipulation and homologous use. Fed Regist. 2017;82(221):54290–2.
6. Schroeder A, Peter Rubin J, Kokai L, et al. Use of adipose-derived orthobiologics for musculoskeletal injuries: A narrative review. PM R. 2020;12:805–16. https://doi.org/10.1002/pmrj.12291
7. Al-Ghadban S, Artiles M, Bunnell BA. Adipose stem cells in regenerative medicine: Looking forward. Front Bioeng Biotechnol. 2022;9:837464. https://doi.org/10.3389/fbioe.2021.837464
8. Viganò M, Lugano G, Orfei CP, et al. Autologous microfragmented adipose tissue reduces inflammatory and catabolic markers in supraspinatus tendon cells derived from patients affected by rotator cuff tears. Int Orthop. 2021;45(2):419–26. https://doi.org/10.1007/s00264-020-04693-9
9. Abdul-Wahab TA, Betancourt JP, Hassan F, et al. Initial treatment of complete rotator cuff tear and transition to surgical treatment: Systematic review of the evidence. Muscles Ligaments Tendons J. 2016;6(1):35–47. https://doi.org/10.11138/mltj/2016.6.1.035
10. Meheux CJ, McCulloch PC, Lintner DM, et al. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: A systematic review. Arthroscopy. 2016;32(3):495–505. https://doi.org/10.1016/j.arthro.2015.08.005
11. Andriolo L, Altamura SA, Reale D, et al. Nonsurgical treatments of patellar tendinopathy: A systematic review and meta-analysis. Am J Sports Med. 2019;47(4):1001–18. https://doi.org/10.1177/0363546518759674
12. Hohmann E, Keough N, Frank RM, et al. Micro-fragmented adipose tissue vs. other orthobiologics for knee osteoarthritis: A systematic review. Arthroscopy. 2025;41(2):418–41. https://doi.org/10.1016/j.arthro.2024.03.002
13. Bugarin A, Schroeder G, Shi BY, et al. Top 50 most-cited articles on PRP in musculoskeletal medicine: Characteristics and quality. Orthop J Sports Med. 2022;10(5):23259671221093074. https://doi.org/10.1177/23259671221093074
14. Hogaboom N, Malanga G, Cherian C, et al. A pilot study to evaluate micro-fragmented adipose tissue injection under ultrasound guidance for the treatment of refractory rotator cuff disease in wheelchair users with spinal cord injury. J Spinal Cord Med. 2021;44(6):886–95. https://doi.org/10.1080/10790268.2021.1903140
15. Striano RD, Malanga GA, Bilbool N, et al. Refractory shoulder pain with osteoarthritis, and rotator cuff tear, treated with micro-fragmented adipose tissue. Orthop Spine Sports Med. 2018;2(1):014.
16. Ferrell JL, Dodson A, Martin J. Microfragmented adipose tissue in the treatment of a full-thickness supraspinatus tear: A case report. Regen Med. 2023;18(10):773–80. https://doi.org/10.2217/rme-2023-0086
17. Marathe A, Song B, Jayaram P. Microfragmented adipose tissue with adjuvant platelet-rich plasma combination therapy for partial-thickness supraspinatus tear. Cureus. 2021;13(6):e15583. https://doi.org/10.7759/cureus.1558
18. Martin J, Takyi S. Micro-fragmented adipose tissue in the successful treatment of recurrent rotator cuff tears in an injured worker. Biol Ortho J. 2023;5(1):e16–e19. https://doi.org/10.22374/boj.v5i1.38
19. Iuso AM, Pacik D, Martin J, et al. Adipose cellular injection in the treatment of an intrasubstance Achilles tendon defect: A case report. Regen Med. 2022;17(11):835–43. https://doi.org/10.2217/rme-2021-0157
20. Mulroy SJ, Thompson L, Kemp B, et al. Strengthening and optimal movements for painful shoulders (STOMPS) in chronic spinal cord injury: A randomised controlled trial. Phys Ther. 2011;91(3):305–24. https://doi.org/10.2522/ptj.20100182
21. Hartrick CT, Kovan JP, Shapiro S. The numeric rating scale for clinical pain measurement: A ratio measure? Pain Pract. 2003;3(4):310–6. https://doi.org/10.1111/j.1530-7085.2003.03034.x
22. Birnie KA, Hundert AS, Lalloo C, et al. Recommendations for selection of self-report pain intensity measures in children and adolescents: A systematic review and quality assessment of measurement properties. Pain. 2019;160(1):5–18. https://doi.org/10.1097/j.pain.0000000000001377
23. Curtis KA, Roach KE, Applegate EB, et al. Reliability and validity of the wheelchair user’s shoulder pain index (WUSPI). Paraplegia. 1995;33(10):595–601. https://doi.org/10.1038/sc.1995.126
24. Koren Y, Leveille SG, You T. Brief pain inventory pain interference subscale: Assessing interference with daily living activities in older adults with multisite musculoskeletal pain. Front Pain Res (Lausanne). 2022;3:897725. https://doi.org/10.3389/fpain.2022.897725
25. Mendoza TR, Chen C, Brugger A, et al. The utility and validity of the modified brief pain inventory in a multiple-dose postoperative analgesic trial. Clin J Pain. 2004;20(5):357–62. https://doi.org/10.1097/00002508-200409000-00011
26. Jensen MP, Hoffman AJ, Cardenas DD. Chronic pain in individuals with spinal cord injury: A survey and longitudinal study. Spinal Cord. 2005;43(12):704–12. https://doi.org/10.1038/sj.sc.3101777
27. Jelsness-Jørgensen LP, Moum B, Grimstad T, et al. Validity, reliability, and responsiveness of the brief pain inventory in inflammatory bowel disease. Can J Gastroenterol Hepatol. 2016;2016:5624261. https://doi.org/10.1155/2016/5624261
28. Atkinson TM, Halabi S, Bennett AV, et al. Measurement of affective and activity pain interference using the Brief Pain Inventory (BPI): Cancer and Leukemia Group B 70903. Pain Med. 2012;13(11):1417–24. https://doi.org/10.1111/j.1526-4637.2012.01498.x
29. Hurst H, Bolton J. Assessing the clinical significance of change scores recorded on subjective outcome measures. J Manipulative Physiol Ther. 2004;27(1):26–35. https://doi.org/10.1016/j.jmpt.2003.11.003
30. Farrar JT, Young JP Jr, LaMoreaux L, et al. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94(2):149–58. https://doi.org/10.1016/S0304-3959(01)00349-9
31. Dworkin RH, Turk DC, Wyrwich KW, et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J Pain. 2008;9(2):105–21. https://doi.org/10.1016/j.jpain.2007.09.005
32. Kamper SJ, Maher CG, Mackay G. Global rating of change scales: A review of strengths and weaknesses and considerations for design. J Man Manip Ther. 2009;17(3):163–70. https://doi.org/10.1179/jmt.2009.17.3.163
33. Salaffi F, Stancati A, Silvestri CA, et al. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Pain. 2004;8(4):283–91. https://doi.org/10.1016/j.ejpain.2003.09.004
34. NS, H., et al. Ultrasound pathology, pain, and function in manual wheelchair users with shoulder pain. PM R. 2023;15(3):323–34.
35. Jacobs PL, Nash MS. Exercise recommendations for individuals with spinal cord injury. Sports Med. 2004;34(11):727–51. https://doi.org/10.2165/00007256-200434110-00003
36. K, Z., et al. Musculoskeletal ultrasound in sports medicine: Current status and future directions. Phys Med Rehab Clin N Am. 2021;32(1):1–15.
37. SM, K., et al. Ultrasonographic evaluation of rotator cuff tears: Comparison with MRI. AJR Am J Roentgenol. 2019;213(3):W118–W125.
38. De Smet L. Responsiveness of the DASH and QuickDASH in upper extremity injuries. Acta Orthop Belg. 2008;74(5):575–9.
39. CA, K., et al. Measurement properties of the DASH and QuickDASH: A systematic review by the Outcome Measures in Rheumatology (OMERACT) Hand and Wrist Working Group. J Hand Ther. 2013;26(3):229–40.
40. Price DD, McGrath PA, Rafii A, et al. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain. 1983;17(1):45–56. https://doi.org/10.1016/0304-3959(83)90126-4
41. Hawker GA, Mian S, Kendzerska T, et al. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken). 2011;63(Suppl 11):S240–S252. https://doi.org/10.1002/acr.20543
42. Jensen MP, Karoly P, Braver S. The measurement of clinical pain intensity: A comparison of six methods. Pain. 1986;27(1):117–26. https://doi.org/10.1016/0304-3959(86)90228-9
43. Revicki DA, Cella D, Hays RD, et al. Responsiveness and minimal important differences for patient reported outcomes. Health Qual Life Outcomes. 2006;4:70. https://doi.org/10.1186/1477-7525-4-70
44. Michener LA, McClure PW, Sennett BJ. American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, patient self-report section: Reliability, validity, and responsiveness. J Shoulder Elbow Surg. 2002;11(6):587–94. https://doi.org/10.1067/mse.2002.127096
45. Angst F, Schwyzer HK, Aeschlimann A, et al. Measures of adult shoulder function: Disabilities of the Arm, Shoulder, and Hand Questionnaire (DASH) and its short version (QuickDASH), Shoulder Pain and Disability Index (SPADI), American Shoulder and Elbow Surgeons (ASES) Society Standardized Shoulder Assessment Form, Constant Score, Simple Shoulder Test (SST), Oxford Shoulder Score (OSS), and Western Ontario Shoulder Instability Index (WOSI). Arthritis Care Res (Hoboken). 2011;63(Suppl 11):S174–S188. https://doi.org/10.1002/acr.20630
46. Jensen MP, Karoly P. Self-report scales and procedures for assessing pain in adults. In: Turk DC, Melzack R, editors. Handbook of pain assessment. New York: Guilford Press; 2001. pp. 15–34.
47. Williamson A, Hoggart B. Pain: A review of three commonly used pain rating scales. J Clin Nurs. 2005;14(7):798–804. https://doi.org/10.1111/j.1365-2702.2005.01121.x
48. Dworkin RH, Turk DC, Farrar JT, et al. Core outcome measures for chronic pain clinical trials: IMMPACT recommendations. Pain. 2005;113(1–2):9–19. https://doi.org/10.1016/j.pain.2004.09.012
49. Werner C, Hezel N, Dongus F, et al. Validity and reliability of the Apple Health app on iPhone for measuring gait parameters in children, adults, and seniors. Sci Rep. 2023;13(1):5350. https://doi.org/10.1038/s41598-023-32550-3
50. Ozinga SJ, Alberts JL. Quantification of postural stability in older adults using mobile technology. Exp Brain Res. 2014;232(12):3861–72. https://doi.org/10.1007/s00221-014-4069-8
51. SH, L. and K. YM. Validity and reliability of gait analysis using smartphones in a controlled environment. Sensors (Basel). 2024;24(5):1579.
52. Sung CM, Hah YS, Kim JS, et al. Cytotoxic effects of ropivacaine, bupivacaine, and lidocaine on rotator cuff tenofibroblasts. Am J Sports Med. 2014;42(12):2888–96. https://doi.org/10.1177/0363546514550991