Blood Flow Restriction Training A Potential Adjunct to Orthobiologic Procedures

Main Article Content

Philip A. Laurence
William J. Hanney https://orcid.org/0000-0002-4649-0979
Joseph Purita https://orcid.org/0000-0001-7798-806X
Ashlee E. Graham
Morey Kolber https://orcid.org/0000-0001-6860-6592

Keywords

Resistance training, Tourniquet, Hypertrophy, Musculoskeletal, Rehabilitation

Abstract

Blood flow restriction (BFR) is an augmented training method that utilizes a proximal extremity tourniquet to occlude the venous and partially occlude the arterial blood flow during specific exercise programming or at rest. BFR training (BFRT) has gained popularity among the exercise science and rehabilitation professions as a means of stimulating anabolic responses with reduced tissue overload and resistance. This manuscript presents an overview of BFRT and its utility for both performance and clinical applications. The clinical efficacy as well as the cellular and molecular mechanisms will be discussed as it may apply to patients with musculoskeletal conditions. Treatment parameters will be introduced for patients and clients with injuries and those seeking improvement in conditioning parameters. Moreover, the utilization of BFRT for patients receiving orthobiologic procedures will be highlighted as BFR serves as a synergistic regenerative rehabilitation intervention and a means of augmenting resistance training for individuals with lower exercise tolerance and post-procedural precautions.

Abstract 713 | PDF Downloads 445

References

1. Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. doi:10.3389/fphys.2019.00533
2. Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport. Aug 2016;19(8):669-75. doi:10.1016/j.jsams.2015.09.005
3. Patterson SD, Hughes L, Head P, Warmington S, Brandner C. Blood flow restriction training: a novel approach to augment clinical rehabilitation: how to do it. Br J Sports Med. Dec 2017;51(23):1648-1649. doi:10.1136/bjsports-2017-097738
4. Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, Abe T. Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. Eur J Appl Physiol. Oct 2011;111(10):2525-33. doi:10.1007/s00421-011-1873-8
5. Davids CJ, Næss TC, Moen M, et al. Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals. J Appl Physiol (1985). Dec 1 2021;131(6):1731-1749. doi:10.1152/japplphysiol.00464.2021
6. Vilaça-Alves J, Magalhães PS, Rosa CV, et al. Acute hormonal responses to multi-joint resistance exercises with blood flow restriction. J Funct Morphol Kinesiol. Dec 22 2022;8(1)doi:10.3390/jfmk8010003
7. Nilsen TS, Blomstrand E, Raastad T. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. . Eur J Appl Physiol. 2013;;(12)(113):2953-2965. doi:doi:10.1007/s00421-013-2733-5
8. Kim E, Gregg LD, Kim L, Sherk VD, Bemben MG, Bemben DA. Hormone responses to an acute bout of low intensity blood flow restricted resistance exercise in college-aged females. J Sports Sci Med. Jan 2014;13(1):91-6.
9. Hwang PS, Willoughby DS. Mechanisms behind blood flow-restricted training and its effect toward muscle growth. J Strength Cond Res. Jul 2019;33 Suppl 1:S167-s179. doi:10.1519/jsc.0000000000002384
10. Nyakayiru J, Fuchs CJ, Trommelen J, et al. Blood flow restriction only increases myofibrillar protein synthesis with exercise. Med Sci Sports Exerc. Jun 2019;51(6):1137-1145. doi:10.1249/mss.0000000000001899
11. Rossi FE, de Freitas MC, Zanchi NE, Lira FS, Cholewa JM. The Role of inflammation and immune cells in blood flow restriction training adaptation: a review. Front Physiol. 2018;9:1376. doi:10.3389/fphys.2018.01376
12. Manini TM, Yarrow JF, Buford TW, Clark BC, Conover CF, Borst SE. Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm IGF Res. Oct 2012;22(5):167-72. doi:10.1016/j.ghir.2012.05.002
13. Inagaki Y, Madarame H, Neya M, Ishii N. Increase in serum growth hormone induced by electrical stimulation of muscle combined with blood flow restriction. Eur J Appl Physiol. Nov 2011;111(11):2715-21. doi:10.1007/s00421-011-1899-y
14. Wernbom M, Apro W, Paulsen G, Nilsen TS, Blomstrand E, Raastad T. Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. Eur J Appl Physiol. Dec 2013;113(12):2953-65. doi:10.1007/s00421-013-2733-5
15. Patterson SD, Leggate M, Nimmo MA, Ferguson RA. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol. Mar 2013;113(3):713-9. doi:10.1007/s00421-012-2479-5
16. Bittar ST, Pfeiffer PS, Santos HH, Cirilo-Sousa MS. Effects of blood flow restriction exercises on bone metabolism: a systematic review. Clin Physiol Funct Imaging. Mar 2 2018;doi:10.1111/cpf.12512
17. Cara E, Novo M, Ascanio Y. Blood Flow Restriction Level 1 Smart Cuffs. Smart Tools Plus, LLC, Strongsville Ohio. 2022.
18. Gharib SA, Dayyat EA, Khalyfa A, et al. Intermittent hypoxia mobilizes bone marrow-derived very small embryonic-like stem cells and activates developmental transcriptional programs in mice. Sleep. Nov 2010;33(11):1439-46. doi:10.1093/sleep/33.11.1439
19. Afina AB, Oleg SG, Alexander AB, et al. The effects of intermittent hypoxic-hyperoxic exposures on lipid profile and inflammation in patients with metabolic syndrome. Front Cardiovasc Med. 2021;8:700826. doi:10.3389/fcvm.2021.700826
20. Briançon-Marjollet A, Pépin JL, Weiss JW, Lévy P, Tamisier R. Intermittent hypoxia upregulates serum VEGF. Sleep Med. Nov 2014;15(11):1425-6. doi:10.1016/j.sleep.2014.07.006
21. Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol. Nov 15 2014;307(10):R1181-97. doi:10.1152/ajpregu.00208.2014
22. Linero C, Choi SJ. Effect of blood flow restriction during low-intensity resistance training on bone markers and physical functions in postmenopausal women. J Exerc Sci Fit. Jan 2021;19(1):57-65. doi:10.1016/j.jesf.2020.09.001
23. Centner C, Lauber B, Seynnes OR, et al. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training. J Appl Physiol (1985). Dec 1 2019;127(6):1660-1667. doi:10.1152/japplphysiol.00602.2019
24. Karabulut M, Bemben DA, Sherk VD, Anderson MA, Abe T, Bemben MG. Effects of high-intensity resistance training and low-intensity resistance training with vascular restriction on bone markers in older men. Eur J Appl Physiol. Aug 2011;111(8):1659-67. doi:10.1007/s00421-010-1796-9
25. Ferraz RB, Gualano B, Rodrigues R, et al. Benefits of resistance training with blood flow restriction in knee osteoarthritis. Med Sci Sports Exerc. May 2018;50(5):897-905. doi:10.1249/mss.0000000000001530
26. Giles L, Webster KE, McClelland J, Cook JL. Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. Br J Sports Med. Dec 2017;51(23):1688-1694. doi:10.1136/bjsports-2016-096329
27. Korakakis V, Whiteley R, Giakas G. Low load resistance training with blood flow restriction decreases anterior knee pain more than resistance training alone. A pilot randomised controlled trial. Phys Ther Sport. Nov 2018;34:121-128. doi:10.1016/j.ptsp.2018.09.007
28. Karanasios S, Korakakis V, Moutzouri M, Xergia SA, Tsepis E, Gioftsos G. Low-load resistance training with blood flow restriction is effective for managing lateral elbow tendinopathy: a randomized, sham-controlled trial. J Orthop Sports Phys Ther. Dec 2022;52(12):803-825. doi:10.2519/jospt.2022.11211
29. Ceballos A, Zeppieri G, Jr., Bialosky J. Resident Case series: blood flow restriction as an adjunct to strengthening exercises in two patients with subacromial impingement and high irritability. Int J Sports Phys Ther. 2022;17(5):931-940.
30. Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. Mar 2008;40(3):529-34. doi:10.1249/MSS.0b013e31815ddac6
31. Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985). Jan 2000;88(1):61-5. doi:10.1152/jappl.2000.88.1.61
32. Spada JM, Paul RW, Tucker BS. Blood flow restriction training preserves knee flexion and extension torque following anterior cruciate ligament reconstruction: A systematic review. J Orthop. Nov-Dec 2022;34:233-239. doi:10.1016/j.jor.2022.08.031
33. Emílio Lixandrão M, Ugrinowitsch C, Roschel H. Commentaries on “Effect of blood-flow restricted vs heavy-load strength training on muscle strength: Systematic review and meta-analysis”. Scand J Med Sci Sports. Feb 2021;31(2):489-492. doi:10.1111/sms.13875
34. Yamanaka T, Farley RS, Caputo JL. Occlusion training increases muscular strength in division IA football players. J Strength Cond Res. Sep 2012;26(9):2523-9. doi:10.1519/JSC.0b013e31823f2b0e
35. Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985). May 2006;100(5):1460-6. doi:10.1152/japplphysiol.01267.2005
36. Abe T, Fujita S, Nakajima T, et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2MAX in Young Men. J Sports Sci Med. 2010;9(3):452-8.
37. Held S, Behringer M, Donath L. Low intensity rowing with blood flow restriction over 5 weeks increases V̇O(2)max in elite rowers: A randomized controlled trial. J Sci Med Sport. Mar 2020;23(3):304-308. doi:10.1016/j.jsams.2019.10.002
38. Coombes J, Dalleck L, Drummond C, Mangahas J, Ramos J, Williams K. Effects of blood flow restriction and neuromuscular electrical stimulation on muscle hypertrophy in adults: a meta-analysis. . J Sci Med Sport 2021;24(1)doi:https://doi.org/10.1016/j.jsams.2021.09.095
39. Teixeira EL, Ugrinowitsch C, de Salles Painelli V, et al. Blood flow restriction does not promote additional effects on muscle adaptations when combined with high-load resistance training regardless of blood flow restriction protocol. J Strength Cond Res. May 1 2021;35(5):1194-1200. doi:10.1519/jsc.0000000000003965
40. Kolber MJ, Purita J, Paulus C, Carreno J, Hanney WJ. Platelet rich plasma: postprocedural considerations for the sports medicine professional. Strength Cond J. 2018;40(5):95-107.
41. Cheatham SW, Kolber MJ, Salamh PA, Hanney WJ. Rehabilitation of a partially torn distal triceps tendon after platelet rich plasma injection: a case report. Int J Sports Phys Ther. Jun 2013;8(3):290-9.
42. Kolber M, Purita J, Fabio Santos Duarte Lana J, Salamh P, Hanney W. The effect of combined bone marrow aspirate, lipoaspirate, and platelet rich plasma injections on pain, function, and perceived change amongst individuals with severe knee osteoarthritis. Biologic Ortho J. 2021; 3(1):e29-e39. doi:https://doi.org/10.22374/boj.v3i1.25
43. Kolber M, Purita J, Hanney W. The effect of combined bone marrow aspirate, lipoaspirate, and platelet-rich plasma injections on pain, function, and perceived change amongst individuals with glenohumeral osteoarthritis: a pilot study. Biologic Ortho J 2022;4(SP1):e83-e95. doi:https://doi.org/10.22374/boj.v4iSP1.49
44. Anderson KD, Rask DMG, Bates TJ, Nuelle JAV. Overall safety and risks associated with blood flow restriction therapy: a literature review. Mil Med. Aug 25 2022;187(9-10):1059-1064. doi:10.1093/milmed/usac055
45. Fitzgibbons PG, Digiovanni C, Hares S, Akelman E. Safe tourniquet use: a review of the evidence. J Am Acad Orthop Surg. May 2012;20(5):310-9. doi:10.5435/jaaos-20-05-310
46. Loenneke JP, Wilson JM, Wilson GJ, Pujol TJ, Bemben MG. Potential safety issues with blood flow restriction training. Scand J Med Sci Sports. Aug 2011;21(4):510-8. doi:10.1111/j.1600-0838.2010.01290.x
47. de Queiros VS, Dantas M, Neto GR, et al. Application and side effects of blood flow restriction technique: A cross-sectional questionnaire survey of professionals. Medicine (Baltimore). May 7 2021;100(18):e25794. doi:10.1097/md.0000000000025794
48. Clark BC, Manini TM, Hoffman RL, et al. Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports. Oct 2011;21(5):653-62. doi:10.1111/j.1600-0838.2010.01100.x
49. Nakajima T, Kurano M, Iida H, et al. Use and safety of KAATSU training:results of a national survey. Int J of KAATSU Train Res 2006;2(1):5–13. doi:https://doi.org/10.3806/ijktr.2.5
50. Clark BC, Manini TM. Can KAATSU Exercise Cause Rhabdomyolysis? Clin J Sport Med. Jan 2017;27(1):e1-e2. doi:10.1097/jsm.0000000000000309
51. Efstratiadis G, Voulgaridou A, Nikiforou D, Kyventidis A, Kourkouni E, Vergoulas G. Rhabdomyolysis updated. Hippokratia. Jul 2007;11(3):129-37.
52. Iversen E, Røstad V. Low-load ischemic exercise-induced rhabdomyolysis. Clin J Sport Med. May 2010;20(3):218-9. doi:10.1097/JSM.0b013e3181df8d10
53. Tabata S, Suzuki Y, Azuma K, Matsumoto H. Rhabdomyolysis after performing blood flow restriction training: a case report. J Strength Cond Res. Jul 2016;30(7):2064-8. doi:10.1519/jsc.0000000000001295
54. Madarame H, Kurano M, Takano H, et al. Effects of low-intensity resistance exercise with blood flow restriction on coagulation system in healthy subjects. Clin Physiol Funct Imaging. May 2010;30(3):210-3. doi:10.1111/j.1475-097X.2010.00927.x
55. Madarame H, Kurano M, Fukumura K, Fukuda T, Nakajima T. Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study. Clin Physiol Funct Imaging. Jan 2013;33(1):11-7. doi:10.1111/j.1475-097X.2012.01158.x
56. Nakajima T, Takano H, Kurano M, Iida H, Kubota N, Yasuda T. Effects of KAATSU training on haemostasis in healthy subjects. Int J KAATSU Train Res 2007;3 11–20. doi:doi: 10.2147/IJGM.S194883
57. Fry CS, Glynn EL, Drummond MJ, et al. Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985). May 2010;108(5):1199-209. doi:10.1152/japplphysiol.01266.2009
58. Yasuda T, Fukumura K, Iida H, Nakajima T. Effects of detraining after blood flow-restricted low-load elastic band training on muscle size and arterial stiffness in older women. Springerplus. 2015;4:348. doi:10.1186/s40064-015-1132-2
59. Yasuda T, Fukumura K, Uchida Y, et al. Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults. J Gerontol A Biol Sci Med Sci. Aug 2015;70(8):950-8. doi:10.1093/gerona/glu084
60. McKay J, Frantzen K, Vercruyssen N, Hafsi K, Opitz T, Davis A, Murrell W. Rehabilitation following regenerative medicine treatment for knee osteoarthritis-current concept review. J Clin Orthop Trauma. 2019 Jan-Feb;10(1):59-66. doi: 10.1016/j.jcot.2018.10.018. Epub 2018 Oct 26. PMID: 30705534; PMCID: PMC6349636.

Most read articles by the same author(s)